

Innovative use of remote sensing in combination with chemical borehole data results in superior insight in the spread of contaminated sediments

> Fred de Haan Waternet

Content

- Introduction on Waternet
- Introduction project
- Methodology
- Results
- Discussions
- Conclusions and recommendations

Waternet: the first water cycle company

Introdcution project (1)

- Waternet = principle
- Oranjewoud = client (consultant)
- Stema Survey = subcontractor on survey and seismics

Introduction project (2)

River Vecht (42 km long)

- Old branch of river Rhine
- Important trade route to Germany
- Picturesque river
- Tourism
- High ecological target
- Sediments are heavily contaminated

Methodology (1)

Standard approach

- Based on guidelines
- Chemical borehole data
- base level by interpolation between boreholes

Suitable

- Small lateral variation
- Fairway, shallow lake etc.

Methodology (2)

Approach Vecht

- Contrary to guidelines
- Combination of chemical borehole data and remote sensing

Why

- Morphology of river
- High lateral variation
- Enormous number of boreholes

Methodology (3)

Remote sensing

Top level
Single beam
Multibeam

geophysical systems development & surveys

Time = 13:58:22	NR. = 1525	Fix = 0	X = 193719.03	Y = 573397.66	Depth = 6.60	TideC = 0.00	File = 8.SEI	Layer = 11 Top DiepeLaag2	DBB = -1.08
					The second secon		AND I THE REPORT OF A DECIDENT		

Methodology (4)

- Profile data in the cross section (high variation) every 50 m
- Chemical borehole data
- Connect chemical borehole data with profile data
- Make digital terrain model (dtm)

Discussion

Second opinion

• Validate accuracy

Gas occurances

Conclusions and recommendations

- Improved insight in spread
- 2 mln m³ (was 1.4 mln m³)
- Seismics is feasible technique
- Detailed information in direction of the highest variation
- In same time DTM
- Promising technique
- Technique needs to be optimised

