

8th international SedNet conference, 6 – 9 November 2013, Lisbon

Development of an experimental method for the assessment of contaminated natural sediment

Catrina Cofalla, Stefanie Lorke, Holger Schüttrumpf

Institute of Hydraulic Engineering and Water Resources Management (IWW), RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52056 Aachen, Germany Sebastian Hudjetz, Markus Brinkmann, Henner Hollert Institute of Environmental Research (IER), RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany

Effects for aquatic organisms

Motivation

water systems

operation

Interdisciplinary research question

Deposits of contaminated sediment in

Erosion due to floods events or dredging

Influence of environmental parameters

Motivation

No integrated and sustainable methods available!

7 November 2013

SedNet Lisbon

Cofalla - Hydrotoxicology

RNTHAAC

- foster the knowledge base of contaminated cohesive sediment transport in combination with a real-time exposure of fish in order to assess the ecotoxicological impact
- Improve interdisciplinary understanding of processes and interactions
- Experimental method

SedNet Lisbon

- Selected parameters are assigned to five groups of parameters
- Using natural components —> investigating natural variations and complexity

7 November 2013

SedNet Lisbon

Cofalla - Hydrotoxicology

Realization in the test facility

- Annular flume
 - → Generate an endless and stationary current
 - → Experimental characterization of cohesive sediment behavior
- Climate chamber
 - → Maintain constant and stable environmental conditions throughout all experiments

SedNet Lisbon

→ Monitored with adequate instrumentation

RNNTHAACH

Cofalla - Hydrotoxicology

7

Used material and parameters

Sediment type

Type 1 System: River Rhine Dredging location: Koblenz-Ehrenbreitstein Moderately polluted

Type 2

System: River Moselle Dredging location: barrage Palzem, Stadtbredimus (L) Polluted with organic contaminants (mostly PAHs)

Used material and parameters

Contaminants

- Artificial contamination
 Spiking with copper
 Used sediment: Type 1
- Natural contamination
 Polycyclic aromatic hydrocarbons (PAH)
 Used sediment: Type 2 (results not shown)

THAACH

Used material and parameters

Organisms

- Rainbow trout
- Exposure in the annular flume
- Evaluation of biomarkers after exposure

Biomarkers

- Biomarker of exposure
 - e.g. EROD activity
 - PAH metabolites
- Biomarker of effect
 - e.g. Induction of micro nucleus

Stressors

current, sediment and contamination

RWTHAACH

SedNet Lisbon

Cofalla - Hydrotoxicology

Used material and identified parameters

Hydrodynamics

- Variation of flow velocity
- Active stress: bed shear stress [N/m²]
- Stress variation: classic approach introduced by Mehta & Partheniades (1982)

Characterization of natural sediment

 Copper spiking reduced erosional resistance

Assumption: more erosion leads to more Cu in SPM and water resulting in more uptake by fish

SedNet Lisbon

- As expected: spiked sediment showed higher Cu content
- Reduced pH value resulted in an increasing Cu concentrations in SPM (red box)

Also Cu content in water increases

SedNet Lisbon

Cofalla - Hydrotoxicology

- Copper content of gill samples of rainbow trout
- Sediment origin: Rhine
- Exposure time: 7 days

- Theoretical set-up of the hydrotoxicological method
 - Identification of relevant parameters
 - Combining hydraulic engineering and ecotoxicology
- Conceptual Study
 - **Optimization** of instrumentation and chosen parameters
- Performance of hydrotoxicological experiments using natural components
- Validation by identifying successful experiments
- Analysis and assessment
- Adaption of the method to different sites

- Objective: Assessment of water supply systems
 - Identification of contaminants, crucial inlet point and sudden events
- Example: Reservoirs for drinking water in the region Eifel
 - Increasing sedimentation demands sediment management
- Adaption of the hydrotoxicological method
 - Using OECD 236 Fish embryo acute toxicity (FET) test with zebrafish (danio rerio)

Thanks for your attention Any questions?

Catrina Cofalla Institute of Hydraulic Engineering and Water Resources Management RWTH Aachen University Mies-van-der-Rohe-Str. 1 52056 Aachen, Germany Phone: +49 241 80-97778 Email: cofalla@iww.rwth-aachen.de