Changing hydrodynamic conditions and their impacts on contaminant remobilisation in estuaries

> Dr Andrew Turner, Plymouth University aturner@plymouth.ac.uk

Research interests

- Characterisation of natural solids
- Geochemical association of contaminants with sediments
- Bioaccessibility of contaminants in sediments
- Adsorption of contaminants on sediments

Research interests

- Characterisation of natural solids
- Geochemical association of contaminants with sediments
- Bioaccessibility of contaminants in sediments
- Adsorption of contaminants on sediments
- Trace metals
- Persistent organics
- Platinum metals
- Pharmaceuticals

Impacts of climate change in estuaries

- Geomorphology
- Erosion
- Temperature increase
- Ice melt
- UV radiation
- Primary production
- pH
- Hypoxia
- Salinity
- Contaminant-hydrodynamic interactions

Behaviour of contaminants in an estuary

Behaviour of contaminants in an estuary

Remobilisation of lead in the Mersey estuary (Martino et al., 2002)

Effects of changing hydrodynamics on sediment processes

(i) River flow (abrupt, continuous) RF

Increased sediment load/input Increased energy – more local resuspension, export Seaward shift of turbidity maximum Decrease in (water) residence time Exposure to lower salinities Bale et al., 1985

Effects of changing hydrodynamics on sediment processes

(ii) Sea level rise Inundation Tidal asymmetry Landward shift of turbidity maximum Reduction in bottom shear Increase in (water) residence time Exposure to higher salinities

Contaminant (trace metal) remobilisation through RF

Driver for remobilisation

Equilibrium partitioning:

 $C_{\rm w} \leftrightarrow C_{\rm s}$

remobilisation

 $C_{\rm s}$ = concentration on sediment, µg kg⁻¹ $C_{\rm w}$ = concentration in water, µg L⁻¹

Sediment-water partition coefficient, K_D :

$$K_{\rm D} = \frac{[C_{\rm s}]}{[C_{\rm w}]}$$

 $K_{\rm D}$ in L kg⁻¹

Indicative K_D values in the River Plym, UK

Increasing association with sediment

Historical accumulation of contaminants over decades/centuries "clean"

contaminated

highly

Mercury, Mersey estuary (Vane et al., 2009)

Remobilisation from resuspended "old" sediment Increase in C_s

$$K_{\rm D} = \frac{[C_{\rm s}]}{[C_{\rm w}]}$$

Injection from pore waters (equilibrium/oxidation-reduction)

$$K_{\rm D}^* = \frac{C_{\rm s}}{C_{\rm pw}}$$

$$K_{\rm D} \bullet K_{\rm D}^*$$

Fluxes and storage of contaminants in estuaries - historical

T = years to centuries

Fluxes and storage of contaminants in estuaries - present

T = years to decades

Fluxes and storage of contaminants in estuaries –

T = years to decades

Degree of mobilisation:

- Magnitude of $K_{\rm D}$
- Extent of sediment resuspension
- Change in $C_{\rm s}$ ($\Delta C_{\rm s}$)
- Pore water concentration

Offset by:

- Re-precipitation/re-adsorption
- Reversibility of adsorption
- Reaction kinetics

Trace metal contaminant remobilisation through SLR

Driver for remobilisation

Salinity-induced desorption

Decrease in $K_{\rm D}$

(Turner and Millward, 2002)

$$K_{\rm D} = K_{\rm D}^{0}(S+1)^{-b}$$

Fluxes and storage of contaminants in estuaries -

T = years to decades

Degree of mobilisation:

- Sensitivity of K_D to salinity (magnitude of b)
- Extent of sediment exposure
- Change in $S (\Delta S)$

Offset by:

- Reversibility of adsorption
- Desorption kinetics

Dissolved Cd in the Gironde estuary (Darlin et al., 2009)

Dissolved Cd in the Penze estuary (Waeles et al., 2005)

Dissolved Cd in San Francisco Bay (Yang & Sanudo-Wilhelmy, 1998)

Ready remobilisation of Cd

Adsorption highly reversible

Turner and Millward (1994)

[*b*] > 1

Pharmaceutical remobilisation through RF

Cytotoxic anticancer drugs Hospital and municipal wastes

Non-selective: "potentially all eukaryotic organisms are at risk" (Johnson et al. 2008; J. Hydrology 348, 167) Platinum-based anticancer drugs:

cisplatin, carboplatin, oxaliplatin

(i) River flow (abrupt, continuous) RF Increased sediment load/input Increased energy – more local resuspension, export Seaward shift of turbidity maximum Decrease in (water) residence time Exposure to lower salinities

Behaviour of contaminants in an estuary

 $PtCl(OH_2)(NH_3)_2^+ \longrightarrow PtCl_2(NH_3)_2$

Conclusions

Remobilisation dependent on:

- Estuary and susceptibility (RF versus SLR)
- **o** History of use and contamination
- Contaminant chemistry (K_D, redox, reversibility, kinetics)

Conclusions

Additional considerations:

- Change in reaction variables (temperature, pH, oxygen)
- Change in abundance and diversity of invertebrates (bio-mobilisation)

