"Modelling sediment supply towards, and sedimentation processes in unnavigable watercourses"

SEDNET - 08/10/2013

Thomas Van Hoestenberghe

Content presentation

- I Motivation for study
- **II** Calibration data
- **III Challenges tackeled so far**
- **IV Results**
- V Challenges to come

Acknowledgements

Antea Group – Bram Ferket, Ivan Rocabado, Renaat De Sutter

KULeuven – Marijn Van den Broek, Gerard Govers

KU LEUVEN

VMM (client) - Nik Dezillie

ALBON (client) - Petra Deproost

I Motivation for study

- Predict dredging works
 - 1,400 km watercourse management
 - Estimated annual inflow: 150,000 m³
 - > Budget : approx. 5 million € /year
 - ➤ Treatment cost (2012): 30€/m³

	2007	2008	2009	2010	2011	2012
Total volume (m ³)	155.613	164.995	138.116	56.804	124.281	195.260
Total budget (euro)	7.251.961	5.682.751	4.273.747	2.464.204	2.591.090	5.879.741
Average treatment cost (euro)	47	34	31	43	21	30

anteagroup

I Motivation for study

• Location sediment ponds

Construction 2/year

 Since 2009 : Vondelbeek 2x, Ophasseltbeek, Molenbeek, Moenebroekbeek, Winge, Velpe, Herk, Jeker

Vondelbeek

I Outline study

- Sediment export (=erosion) hydrological modelling
 - ✓ soil conservation measures
 - ✓ = Watem/Sedem, LISEM (KULeuven)
 - ✓ Input sediment load into hydraulic models
- Connecting soil to river connectors
 - ✓ Sewerage network, ditches, roads
- Sediment tranport hydraulic modelling
 - \checkmark river restoration scenarios
 - ✓ Infoworks RS (detailed), Infoworks ICM (simplified) = 1D
 - ✓ Deposition, erosion & resuspension

I Outline study

- Both models:
 - First application of detailed model for 7 catchments
 - Then simplify model
 - Application of simplified model for all catchments
- In this presentation: first test resuts for catchment Maarkebeek

IICalibration data

Sediment transport data:
100 years 15' SSC data (100-1000)

Bathymetrical data of
10 sedimentation zones &
5 retention basins

Sediment continuity equation

Replacing spill units

Stability

In bank model vs model including flood areas

In bank model vs model including flood areas

In bank model vs model including flood areas

- Flooded structures: adding flooding volumes by vertical sluices
- Flooded river banks:
 - \rightarrow example confluence Nederaalbeek Molenbeek (KW180)

WaTEM/SEDEM: output for each VHA segment

	А	В	С	D	
1	River_id	Hillslope sediment input	Sediment input upstream river	Sediment output river	
2	1	395	0	395	
3	2	210	0	210	
4	3	356	0	356	
5	4	204	395	598	
6	5	219	356	575	
7	6	253	0	253	
8	7	13	0	13	
9	8	219	0	219	
10	9	313	210	524	
11	10	165	219	384	
12	11	0	384	384	
13	12	81	13	94	
14	13	922	0	922	
15	14	615	0	615	
16	15	85	709	793	
17	16	245	1174	1419	

anteagroup

Watershed Maarkebeek: Selected sedimentation zones

Watershed Maarkebeek: tests on event 4/7/2005

-> scenario 1

Sed	Start Date-Time iment Transport Eqn. Coeff. Depth Change Criteria (m) Bed Elevation Distribution Grading cdiment Size D0 (mm)	01 januari 1.000 0.010 1.000	2000 00:00:00 V HD V HD V HD V HD V	ב ר י	Active La Thickness Fai Bed Porc Channel Geom Upc Trans Calculation Met D0 and D100 Sediment Size D (r	aver 2.000 ctor issity 0.500 etry None port Composit hod 0.250		• •
٦H	lard Bed			Г	Dredging			
	Dredging Type	Constant Lev			ureaging Time (Seconds		T HD Y
_	Dredging Type Diameter (mm)	fho (kg/m3)	Transport equation		Proportion	Cohesive	Cohesive threshold (N/m2)	Cohesive Vs (mm/s)
•	Diameter (mm) 0.050	Constant Lev tho (kg/m3) 2650.0	Transport equation		Proportion 0.900	Cohesive	Cohesive threshold (N/m2) 0.100	Cohesive Vs (mm/s)
▶ 2	Diameter (mm) 0.050 0.200	Constant Lev (kg/m3) 2650.0 2650.0	Transport equation Westrich & Jurashek Engelund & Hansen	•	Proportion 0.900 0.100	Cohesive	Cohesive threshold (N/m2) 0.100	Cohesive Vs (mm/s) 1.960

Scenario 1, measuring location 347 at Leupegem

Scenario 1, measuring location at Maarke-Kerkem

Scenario 1, downstream ter Borgtmolen (sedimentation location)

Scenario 1, upstream Maarkebeek (erosion)

Scenario 1, sediment balance

Cumulative sediment mass balance (tonnes) influx = 4948.6 outflux = 4104.5 net deposition (tonnes) = 738.7 net deposition (m^3) = 557.5 \rightarrow Good results sediment balance, but uprealise

→ Good results sediment balance, but unrealistic high fluxes and sedimentation volumes

Watershed Maarkebeek: tests on event 4/7/2005

- -> # scenario's, parameters: composite, armouring, Active layer thickness, settling velocity, hard bed, porosity
- -> scenario 217: . Model without grading, increased cohesive treshold and lowered settling velocity

	Diameter (mm)	rho (kg/m3)	Transport equation		Proportion	Cohesive	Cohesive threshold (N/m2)	Cohesive \/s (nm/s)
1	0.050	2650.0	Westrich & Jurashek		0.900	×	50.000	0.100
•	0.200	2650.0	Engelund & Hansen		0.100			
*				•				

Scenario 217, measuring location 347 at Leupegem

Simulation Plot Produced by d12235 (26/09/2013 13:49:34) Page 2 of 2

Scenario 217, measuring location at Maarke-Kerkem

Sim: >Maarkebeek>Run Group>Test_MAA_Sed_VG1_2_NoGrading+Tau+VSyyy>EV_MAA_Sed_VG1_2 (26/09/2013 13:38:41)
Selection List: Custom Selection
maa110
Concentration (mg/l)

Scenario 217, downstream ter Borgtmolen (sedimentation location, but erosion)

Scenario 217, bend upstream Nonnemolen

IV Results - River

Scenario 217, GOG Etikhove

Scenario 217, typical erosion/sedimentation profiles (upstream)

Scenario 217, sediment balance

Cumulative sediment mass balance (tonnes) influx = 4948.8 outflux = 1207.6 net deposition = 3730.2 net deposition (m³) = 2815.3

 \rightarrow Realistic fluxes, but unrealistic sedimentation volumes

V Challenges to come - soil

- WaTEM/SEDEM
 - Erosion part Sedimentation part
 - Calibration for a higher resolution (5 x 5m)
- LISEM
 - Evaluation based on available datasets
 - If necessary: adaptations to LISEM
- Resolution \uparrow : optimal model results \downarrow
- Runoff model: Feasibility of the CN method
- Grain size distribution
- Implementation connectivity hillslope river

V Challenges to come - River

- Further calibration & validation of sediment modules
- Comparison between flood compatible and inbank IWRS model
- (Hydrodynamic) stabilization of IWRS (and ICM) model
- Simulate geometry update
- Comparison IWRS and ICM in terms of performance and calculation time
- Upstream extension of model (cfr. VHA)

Thank you for your attention