INFLUENCE OF INTERNAL *VERSUS* DIFFUSE SOURCES ON NUTRIENTS AND TRACE ELEMENTS IN WATER:

THE CASE OF A EUTROPHIC COASTAL LAGOON

Patrícia Pereira^{1,2}, Carlos Vale¹, Maria João Botelho², Hilda de Pablo¹

1 IPMA, Portugal

2 CESAM and Aveiro University, Portugal

Coastal lagoons

► Additionally, rivers, tributaries and localized **diffuse sources** also supply nutrients and trace elements to coastal lagoons.

WHY THE ÓBIDOS LAGOON?

. Area: 7 km² . Depth: 1-2 m

Problematic area: Barrosa branch

- ▶ Input of municipal wastewater discharges (until 2005) and drainage of agriculture fields
- ▶ Discharge of a small tributary (Cal river) (winter discharge of 0.1 m³ s⁻¹)
- ► Low water renewal → High residence time (> 20 days)
- ▶ "Blooms" of *Ulva* sp. and *Enteromorpha* sp.

WHY THE ÓBIDOS LAGOON?

• 1 Ammonium and phosphate in Barrosa branch

 Barrosa branch was classified as polytrophic based on DIN according with Wasmund at al. (2001)

► O₂ decreases in water column during the night

200 150 100 10 12 14 16 18 20 22 0 2 4 6 8 10 12 hours

Under these oxic-anoxic conditions, trace elements and nutrients are release from sediments (Pereira et al., 2009)

WHY THE ÓBIDOS LAGOON?

A previous work pointed out the relevance of sediment as an **internal source** of nutrients and trace elements for the water column (particularly in summer) (Pereira et al., 2009).

Out of the relationships:

- . Day-night cycle data
- . Summer data

Similar to Cu

- 26-h survey data
- ♦ Summer data
- Seasonal data

AIMS OF THE WORK

➤ To describe the magnitude and extension of **internal sources** (sediments) on nutrients and trace elements availability during the night under eutrophic conditions.

SAMPLING AND PARAMETERS

Summer 2007 and Winter 2008

Óbidos lagoon

Water

column

Day-night scale

In situ measurements each 2 - 4 hours

- FQ parameters (temperature, salinity, pH, O₂)

24-hour cycle

Surface water collection each 2 - 4 hours

- Trace elements in suspended particulate matter
 (Al, Fe, Mn, Pb)
- Nutrients and trace elements in dissolved fraction (NH₄+, Si(OH)₄, NO₃-, PO₄³⁻, Mn, Fe, Pb, Cu)

SAMPLING AND ATMOSPHERIC CONDITIONS

Summer 2007 and Winter 2008

Óbidos lagoon

	Summer	Winter
	20/07/07	3/12/08
		*
Temperature (°C)	21	13
Precipitation (mm/3h)	0	3
Clouds (%)	0	100
Wind direction	NW	W
Wind intensity (m/s)	6	9

DAY-NIGHT CYCLES - Physico-chemical parameters

► Large day-night fluctuation in summer

• Night:
♣ O₂ reaching 40%

More constant values in winter

Lower salinity in winter

• Higher influence of freshwater discharges

DAY-NIGHT CYCLES – Nutrient availability

▶ Peaks during the night in summer when O₂ was lower

Nutrient regeneration in the anoxic sediment and exportation to the water column (relevance of **internal source**)

Higher nutrient availability in winter, except phosphate

DAY-NIGHT CYCLES - Metal availability

▶ Pb peak during the night in summer when O₂ was lower

Metal remobilization in the anoxic sediment and exportation to the water column (relevance of **internal source**)

Higher Pb levels in summer than in winter; the opposite pattern was recorded for Cu and no differences were found for Cd.

DAY-NIGHT CYCLES - Metal availability

Peaks during the night in summer when O₂ was lower, particularly for manganese

Metal remobilization in the anoxic sediment and exportation to the water column (relevance of **internal source**)

Higher Mn/Al ratios in summer than in winter; the opposite pattern was recorded for Fe and Pb highlighting the importance of freshwater inputs.

METAL LEVELS *VERSUS* KEY PARAMETERS

. Significant correlations between metal levels and ${\rm O_2}$ in summer

Internal source

. Significant correlations between metal levels and salinity in winter

Diffuse source

METAL LEVELS *VERSUS* KEY PARAMETERS

. Significant correlations between metal levels and ${\rm O_2}\,{\rm in}$ summer

Internal source

. Significant correlations between metal levels and salinity in winter

Diffuse source

DAY-NIGHT CYCLES

The example of Mn as an element with high mobility near the sediment-water interface

- Input of nutrients and metals at Barrosa branch by freshwater discharges (Cal river), mainly in winter (diffuse source).
- Supplementary input of nutrients and metals during the night at Barrosa branch, which for some elements is far above that provided by freshwater discharges (e.g. Mn).
- Reductive dissolution of Mn and Fe oxyhydroxides in sediments with the release of Mn²⁺ and Fe²⁺ and their upward diffusion in the water column.

FINAL REMARKS

- Under eutrophic conditions, metal remobilization in sediments and the subsequent exportation to the water column represent an additional input of metals that could be incorporated by the biota.
- Current results highlight to the importance of assessing environmental conditions over daynight cycles.
- This approach seems to be particularly relevant when addressing the relationships between "chemical conditions" and "biological quality elements" foreseen in the Water Framework Directive.

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

