

A decision-making methodology for the management of dredged sediments on the basis of chemical and toxicological data

A. Katsiri⁽¹⁾, M. Pantazidou⁽¹⁾, I. Damikouka⁽¹⁾, Ch. Kontogiorgi⁽²⁾

(1) National Technical University of Athens, School of Civil Engineering

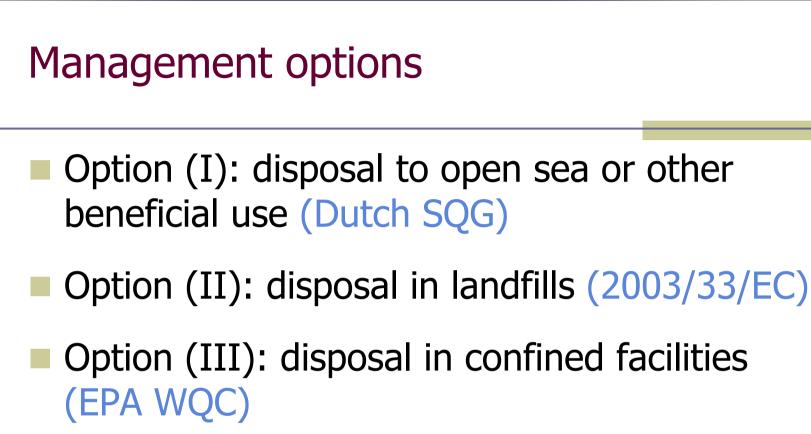
(2) Organization of Port of Piraeus

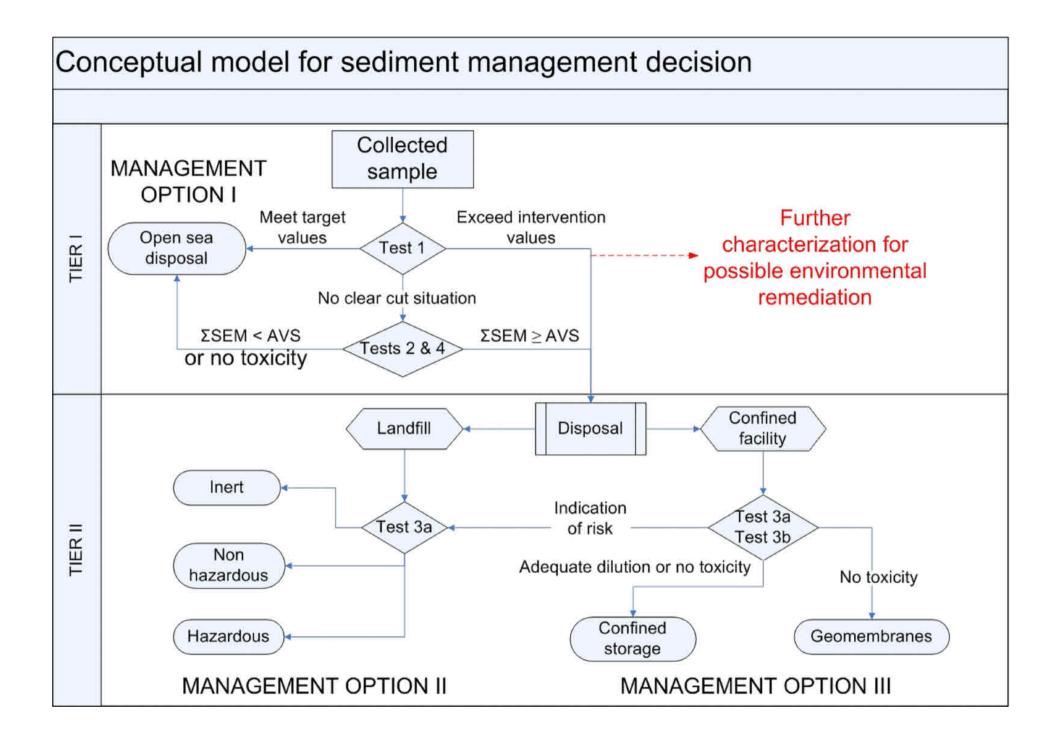
5th INTERNATIONAL SedNet CONFERENCE, 27-29 May, Oslo, Norway

Scope of the work

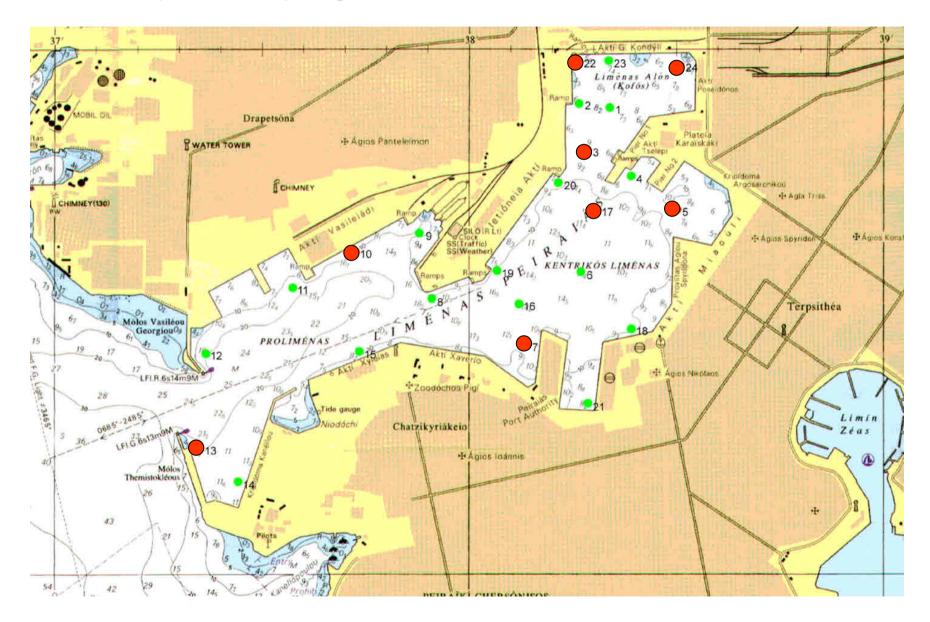
- This paper presents a methodology of evaluating management options for dredged sediments disposal
- It is based of an array of characterization tests
- An example application for the sediments of Piraeus port is presented.

(a) dredging in order to meet port and navigation requirements

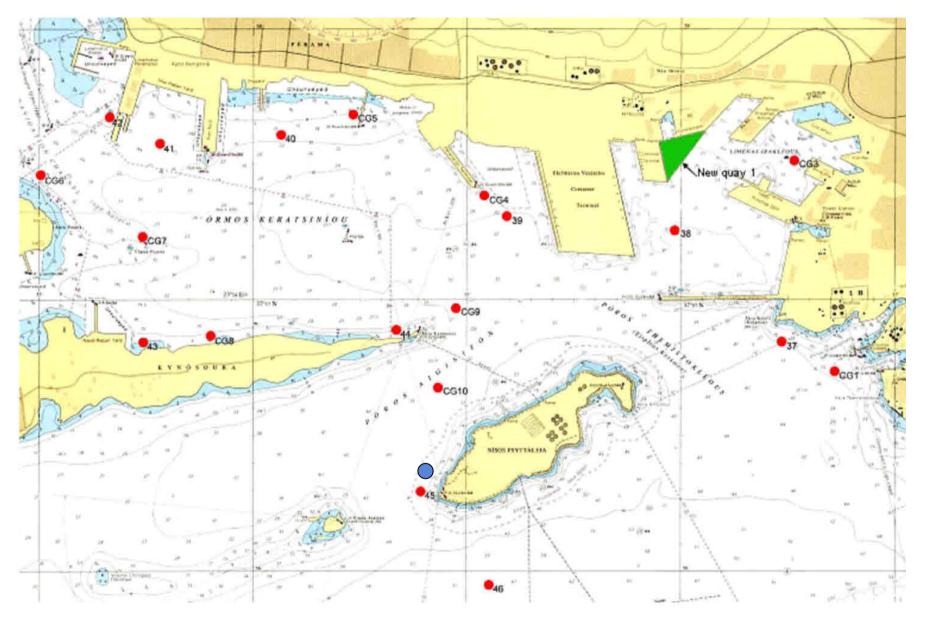

(b) environmental cleanup required to reduce contamination levels to a specified level.

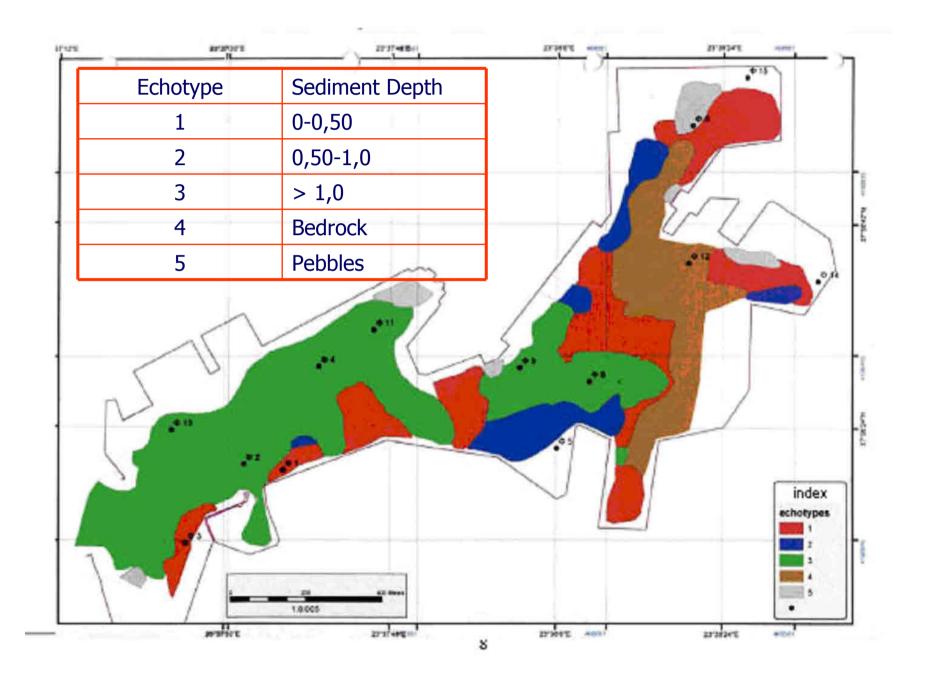

Sustainable sediment management

- A very challenging issue.
- Different actors with particular interests are involved in the decision-making process
 - whether, which, and when action has to be taken
 - who has to pay
 - conflicting and some-times confusing legislation framework.
- Management options depend on the chemical characteristics and the toxicity of the sediments
 - the question of risk needs to be addressed.
- The characterization of sediments before final disposal becomes necessary



- Test (1): Total metals in sediment
- Test (2a): Metals in pore water
- Test (2b): Toxicity of pore water
- Test (3a): Metals in leachate
- Test (3b): Toxicity of leachate
- Test (4): AVS vs SEM





Inner port sampling stations

Outer port sampling stations

Physical characteristics

Parameter	Unit	Range
Moisture content	%	42 - 49
Volatile content	% DS	7,0 – 16,6
Fine material <74 µm	% DS	38 - 81
Total hydrocarbons	mg/g	79 - 897
Dissolved organic carbon (DOC)	mg/L	350 - 490
рН		8,0

Chemical analyses and AVS/SEM

Station	Cu	Pb	Zn	Ni	Cr	Cd	Hg	AVS	ΣSEM
1	359,8	264,3	504,3	84,0	92,4	<20	0,5	8,3	14,8
2	199,6	147,2	387,7	52,0	67,4	<20	0,48	6,6	7,8
4	196,4	206,5	273,8	46,1	57,4	<20	0,5	7,0	5,7
5	161,1	362,2	730,2	64,5	71,4	<20	0,75	7,6	4,7
7	257,5	1628,8	768,8	46,1	59,0	<20	10,2	5,8	8,4
10	291,7	724,8	827,9	61,1	74,7	<20	1,40	7,5	10,2
13	129,8	377,6	922,8	44,0	67,7	<20	0,30	5,2	5,3
45	127.1	261.6	824.0	42.6	52.1	<20	0.07	8.9	4.6
Target values									
Intervention values	190	530	720	210	380	12	10		

Tier I Decision matrix

Station	1	2	4	5	7	13	10	50
Organic matter and fine material	high	medium	medium	medium	high	low	mediu m	low
Metal Toxicity index	22	14	13,5	19	68	18	30	14.5
Pore water toxicity and bioavailability	-	-	-	-	-	-	-	-
Potential toxicity, Σ SEM - AVS ≥ 0	+	+/-	-	-	+	+/-	+	-
Sea disposal (Option I)	no	unclear	yes	unclear	no	unclear	no	yes

Station	1	2	5	7	Inert	Non hazardous
Cd	<0.2	<0.2	<0.2	<0.2	0.03	0.6
Cr	<0.1	<0.1	<0.1	<0.1	0.20	4.0
Cu	0.09	0.13	0.29	0.13	0.90	25
Hg (µg)	<0.2	<0.2	<0.2	<0.2	3	50
Ni	0.46	0.38	0.35	0.39	0.20	5.0
Pb	1.0	<0.4	0.90	0.5	0.20	5.0
Sb	0.02	0.052	0.04	0.026	0.02	0.20
Zn	0.30	0.10	0.10	0.20	2	25

Station	1	2	5	7	Limit	Dilution
Cd	<100	< 100	< 100	< 100	40	0
Cr	<50	<50	<50	<50	1100	0
Cu	45	65	66	146	4.8	31
Hg (µg)	0.1	0.1	0.1	0.1	1.8	0
Ni	229	188	193	175	74	3
Pb	501	200	263	440	210	2.4
Sb	10	26	2	130	1500	0
Zn	141	51	70	88	90	1.6
Toxicity %	34.2	14.4	5.0	15.1		

Tier II assessment

- Management option II (land disposal) feasible for all stations
- Management option III (confined disposal)
 - Not feasible for stations 1 and 7 (high dilution required or increased toxicity)
 - Feasible for all other stations

Conclusions

- Sediments contain significant quantities of heavy metals (mainly zinc, copper and lead) that exceed target values and for some elements intervention values.
- Less than 0.6% of the total metal concentration was found in pore water and less than 0.8% in leachates.
- The proposed methodology provides a structured system for sediment characterization for decision making.
- Disposal to open sea proved to be infeasible for the more contaminated sediments found in areas with increased shipping activities in the port of Piraeus.
- Disposal to confined facilities is a good option for sediments with intermediate degrees of contamination.
- Disposal to non-hazardous landfill sites was shown to be a viable alternative method of disposal, even for the most contaminated sediments from the port of Piraeus.

Thank you for your attention!

