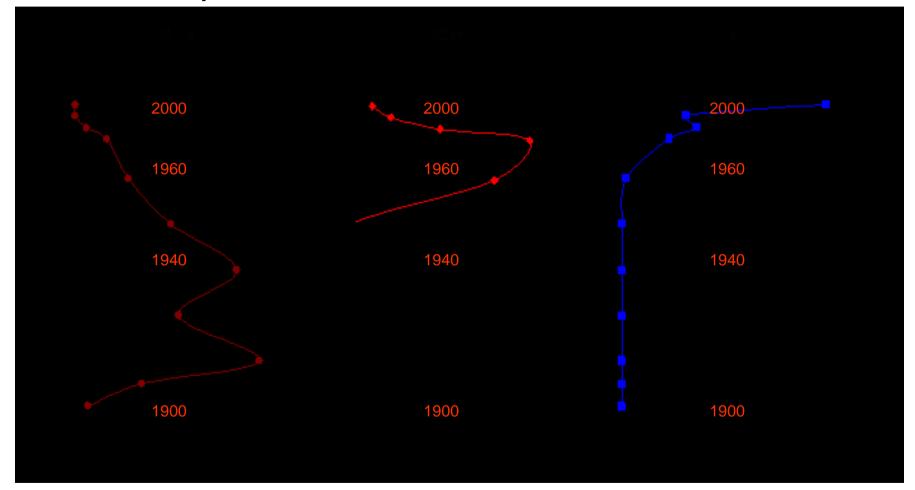
Contamination of fjords by urban run-off

Arne Pettersen Gerard Cornelissen Espen Eek Gijs D. Breedveld Elisabeth Nesse Aud Helland


Sediment remediation. The ambition of a clean fjord.

- Sediments in Norwegian harbors are generally contaminated with heavy metals and organic constituents.
- These contaminants were transported to the sediments by various industrial sources and municipal sewer.
- These historic sources are often strongly reduced
- In the absence of major point sources the sediment themselves are found to be a potential source.

Contaminant profile in sediments

Environmental goals

- Prior to remedial action environmental goals are set
- These goals can be ambitious. The Norwegian sediment quality criteria class II is in several project defined as the desired level of contaminants in the seabed after remediation.

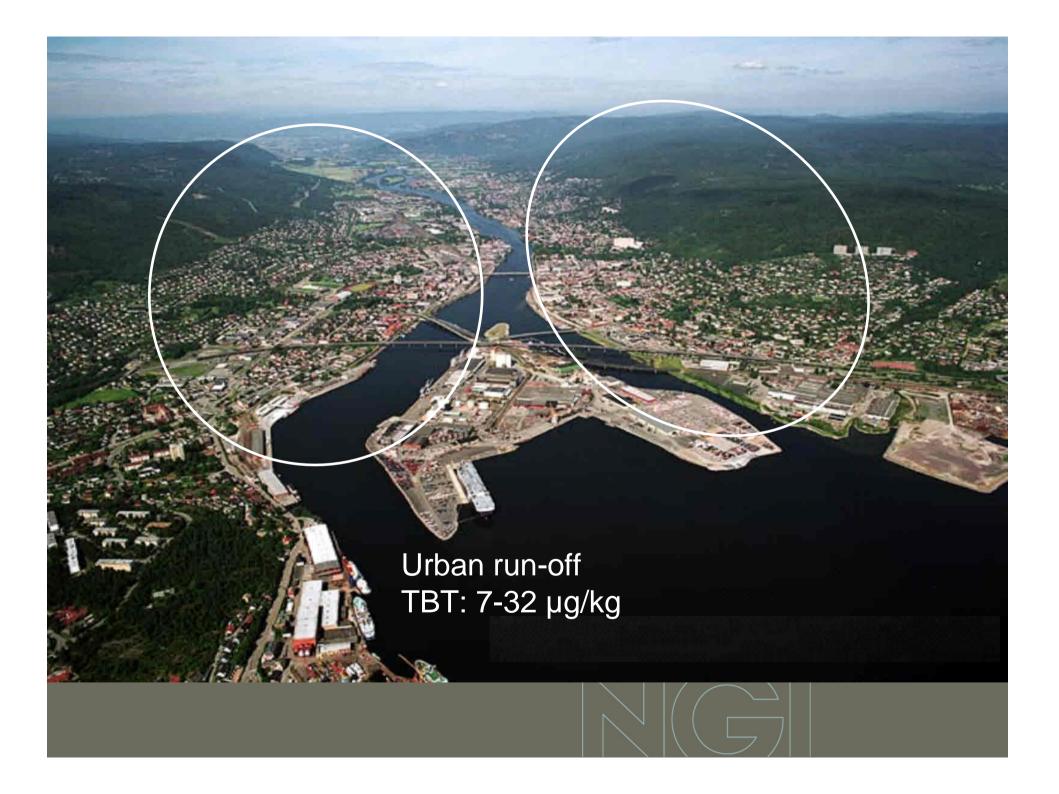
	Tilstandsklasiser								
Parametre	l Ubetydelig- Lite forurenset	II Moderat forurens.et	III Markert forurenset	IV Sterkt forurenset	V Meget sterk forurenset				
Arsen (mg As/kg)	<20	20-80	80-400	400-1000	>1000				
Bly (mg Pb/kg)	<30	30-120	120-600	600-1500	>1500				
Fluorid (mg F/kg)	<800	800-3000	3000-8000	8000-20000	>20000				
Kadmium (mg Cd/kg)	<0.25	0.25-1	1-5	5-10	>10				
Kobber (mg Cu/kg)	<35	35-150	150-700	700-1500	>1500				
Krom (mg Cr/kg)	<70	70-300	300-1500	1500-5000	>5000				
Kvikksølv (mg Hg/kg)	<0.15	0.15-0.6	0.6-3	3-5	>5				
Nikkel (mg Ni/kg)	<30	30-130	130-600	600-1500	>1500				
Sink (mg Zn/kg)	<150	150-700	700-3000	3000-10000	>10000				
Sølv (mg Ag/kg)	<0.3	0.3-1.3	1.3-5	5-10	>10				
TBT ** 1) (µg/kg)	<1	1-5	5-20	20-100	>100				
Σ PAH 2) (µg/kg)	<300	300-2000	2000-6000	6000-20000	>20000				
B(a)P 3) (µg/kg)	<10	10-50	50-200	200-500	>500				
HCB ⁴⁾ (µg/kg)	< 0.5	0.5-2.5	2.5-10	10-50	>50				
Σ PCB,** 5) (ug/kg)	<5	5-25	25-100	100-300	>300				
EPOCI (ug/kg)	<100	100-500	500-2000	2000-15000	>15000				
TE _{PCDE/D} ⁷⁾ (ng/kg)	< 0.01*	0.01-0.03	0.03-0.10	0.10-0.5	>0.5				
Σ DDT** ⁵⁾ (μg/kg)	<0.5	0.5-2.5	2.5-10	10-50	>50				

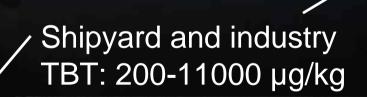
Management tools


- There is a need for management tools in the process of defining realistic level of ambition including
 - Are there any active sources of contaminants?
 - Will sediment remediation be the optimal solution to reach the goals?
 - Should sources on land be restored as the first priority?
 - What is the natural background level in urban areas?
 - Are the environmental goals realistic?

Management tools

- Quantifying the contamination of fjords by urban run-off
- Industrial and urban areas
- Transport of particulate matter from surfaces
- Need to be combined with other methods
 - Sediment investigations
 - Flux measurements
 - Risk assessment
 - Cost/benefit analysis


A case: Port of Drammen Remedial plan of the Drammensfjord


- Sediments are found to represent an unacceptable environmental risk.
- Define the optimum remedial efforts.
 - Is source control at a satisfactory level
 - Should the remedial effort be focused on land sources or or contaminated sea sediments
- Extensive data collection
 - Characterization of particulate load from rivers
 - Run-off from urban areas
 - Run-off from industrial areas
 - Flux quantification by sediment traps
 - Sediment sampling
- Data collection from one year to cover annual variations

River transported matter TBT: 60-230 µg/kg

Assessment							
Compound	Sediment	Sedimenting material	River	Urban run-off	Run-off industrial area		
PAH (mg/kg)	3,0-4,8	1,4-2,6	0,1-1,0	0,2-1,0	1,7-16		
TBT (µg/kg)	300-2700	360-670	60-230	7-32	200-11000		
DBT (µg/kg)	60-300	170-240	95-210	8-41	100-2300		
MBT (µg/kg)	15-43	75-119	60-120	9-45	60-1300		

Low contribution from land

Assessr	nent					
Compound	Sediment	Sedimenting material	3	River	Urban run-off	Run-off industrial area
PAH (mg/kg)	3,0-4,8	1,4-2,6		0,1-1,0	0,2-1,0	1,7-16
TBT (µg/kg)	300-2700	360-670		60-230	7-32	200-11000
DBT (µg/kg)	60-300	170-240		95-210	8-41	100-2300
MBT (µg/kg)	15-43	75-119		60-120	9-45	60-1300

Fresh sediment still contaminated

Assessment						
Compound	Sediment	Sedimenting material	g	River	Urban run-off	Run-off industrial area
PAH (mg/kg)	3,0-4,8	1,4-2,6		0,1-1,0	0,2-1,0	1,7-16
TBT (µg/kg)	300-2700	360-670		60-230	7-32	200-11000
DBT (µg/kg)	60-300	170-240		95-210	8-41	100-2300
MBT (µg/kg)	15-43	75-119		60-120	9-45	60-1300
			_			

Source control not sufficient

Assessment ^{1. priority}

Compound	Sediment	Sedimenting material	River	Urban run-off	Run-off industrial area
PAH (mg/kg)	3,0-4,8	1,4-2,6	0,1-1,0	0,2-1,0	1,7-16
TBT (µg/kg)	300-2700	360-670	60-230	7-32	200-11000
DBT (µg/kg)	60-300	170-240	95-210	8-41	100-2300
MBT (µg/kg)	15-43	75-119	60-120	9-45	60-1300

	2. priority							
Assessment								
Compound	Sediment	Sedimenting material	River	Urban run-off	Run-off industrial area			
PAH (mg/kg)	3,0-4,8	1,4-2,6	0,1-1,0	0,2-1,0	1,7-16			
TBT (µg/kg)	300-2700	360-670	60-230	7-32	200-11000			
DBT (µg/kg)	60-300	170-240	95-210	8-41	100-2300			
MBT (µg/kg)	15-43	75-119	60-120	9-45	60-1300			

Achievable results							
Assessment							
Compound	Sediment	Sedimenting material	River	Urban run-off	Run-off industrial area		
PAH (mg/kg)	3,0-4,8	1,4-2,6	0,1-1,0	0,2-1,0	1,7-16		
TBT (µg/kg)	300-2700	360-670	60-230	7-32	200-11000		
DBT (µg/kg)	60-300	170-240	95-210	8-41	100-2300		
MBT (µg/kg)	15-43	75-119	60-120	9-45	60-1300		

Summary

- Urban run-off is a source of contamination and should be included when considering sediment remediation
- Characterization of sources necessary for the proper assessment
 of priority of remedial action
 - Active sources found in Drammen
 - Source control and source tracing must continue
- The methods allow realistic identification of environmental goal
- The use of sediment quality criterion (class II) is not very realistic, especially for TBT
- Natural recovery could be a remediate alternative as a result of high material transport from rivers in the Drammen area

Available online at www.sciencedirect.com

Marine Pollution Bulletin 56 (2008) 565-573

www.elsevier.com/locate/marpolbul

The contribution of urban runoff to organic contaminant levels in harbour sediments near two Norwegian cities

Gerard Cornelissen^{a,b}, Arne Pettersen^{a,*}, Elisabeth Nesse^{a,1}, Espen Eek^a, Aud Helland^{c,2}, Gijs D. Breedveld^a

^a Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway
 ^b Department of Applied Environmental Sciences (ITM), Stockholm University, 10691 Stockholm, Sweden
 ^c Norwegian Institute for Water Research (NIVA), P.O. Box 173 Kjelsås, N-0411 Oslo, Norway

Available online at www.sciencedirect.com

Marine Pollution Bulletin 56 (2008) 565-573

www.elsevier.com/locate/marpolbul

The contribution of urban runoff to organic contaminant levels in harbour sediments near two Norwegian cities

Gerard Cornelissen^{a,b}, Arne Pettersen^{a,*}, Elisabeth Nesse^{a,1}, Espen Eek^a, Aud Helland^{c,2}, Gijs D. Breedveld^a

^a Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway
 ^b Department of Applied Environmental Sciences (ITM), Stockholm University, 10691 Stockholm, Sweden
 ^c Norwegian Institute for Water Research (NIVA), P.O. Box 173 Kjelsås, N-0411 Oslo, Norway

THANK YOU FOR YOUR ATTENTION

