

A modeling system handling the wide range of time scales involved in sediment transport

www.hach.ulg.ac.be

Presented by Dr **Benjamin J. Dewal**s^{1,2} Co-authors: Dr Sébastien Erpicum¹, Dr Pierre Archambeau¹ & Prof. Michel Pirotton¹

¹ Research Unit of Hydrology, Applied Hydrodynamics and Hydraulic Constructions (HACH) – University of Liege, Belgium
 ² Post-doctoral researcher of the Belgian Fund for Scientific Research F.R.S. – FNRS

Flow model

Eulerian model

Different scales in space and time

Lagrangian model

Conclusion

DEMANDS FOR MODELLING IN FLUVIAL (AND COASTAL) MORPHODYNAMICS

n ng Université de Liège

Flow model

Eulerian model

Lagrangian model

Conclusion

DEMANDS FOR MODELLING IN FLUVIAL (AND COASTAL) MORPHODYNAMICS

Different scales in space and time

Sedimentation during months, years or decades

Université

Slope within

Flushing operations planned for a couple of days or week(s)

Slope failures within seconds

ArGEnCo – MS²F - Hydrology, Applied Hydrodynamics and Hydraulic Constructions (HACH)

Flow model

Eulerian model

Lagrangian model

Conclusion

DEMANDS FOR MODELLING IN FLUVIAL (AND COASTAL) MORPHODYNAMICS

Different scales in space and time

Flushing operations planned for a

couple of days or week(s)

Different transport mechanisms

(bed load, suspended load, mud; cohesive / non-cohesive ...)

Sedimentation during months, years or decades

Slope failures within seconds

ArGEnCo – MS²F - Hydrology, Applied Hydrodynamics and Hydraulic Constructions (HACH)

CONCEPTUAL MODEL: 2DH

Flow model

Eulerian model

MATHEMATICAL MODEL

 2DH model: still appealing for a number of engineering applications (cf scarcity of 3D input and validation data, and sensitivity with respect to IC and BC)

CONCEPTUAL MODEL: 2DH

Eulerian model

MATHEMATICAL MODEL

- (Extended) shallow-water equations
- ► Includes wall-friction & turbulence modelling (two-length-scale depth-averaged k-ɛ model)

 2DH model: still appealing for a number of engineering applications (*cf* scarcity of 3D input and validation data, and sensitivity with respect to IC and BC)

Modelling system

CONCEPTUAL MODEL: 2DH

Flow model

Eulerian model

MATHEMATICAL MODEL

(Extended) shallow-water equations Includes wall-friction & turbulence modelling (two-length-scale depth-averaged k- ε model)

Eulerian mass balance for suspended load

Mass balance for bedload or total load (solid) discharge = local instant. transport capacity)

e.g. MPM, Ackers & White, Rickenmann, ...

CONCEPTUAL MODEL: 2DH

Eulerian model

MATHEMATICAL MODEL

ArGEnCo – MS²F - Hydrology, Applied Hydrodynamics and Hydraulic Constructions (HACH)

 (Extended) shallow-water equations
 Includes wall-friction & turbulence modelling (two-length-scale depth-averaged k-€ model)

Eulerian mass balance for suspended load Lagrangian force balance for suspended sediments

 Mass balance for bedload or total load (modelled as equilibrium sediment transport)

www.hach.ulg.ac.be

CONCEPTUAL MODEL: 2DH

Eulerian model

MATHEMATICAL MODEL

 (Extended) shallow-water equations
 Includes wall-friction & turbulence modelling (two-length-scale depth-averaged k-€ model)

Eulerian mass balance for suspended load

Lagrangian force balance for suspended sediments

Mass balance for bedload or total load (solid discharge = local instant. transport capacity)

- Finite volume technique
- Modelling system WOLF
- Existing academic code
- Entirely developed in the research group

Université U Q

ArGEnCo – MS²F - Hydrology, Applied Hydrodynamics and Hydraulic Constructions (HACH)

www.hach.ulg.ac.be

Flow model

Eulerian model

CHARACTERISTICS OF THE DEPTH-AVERAGED FLOW MODEL

Multiblock grids

- + 1D branches
- Multimodel system
- Adaptive computation grid
- Drying of cells free of mass conservation error

Iterate until h >= 0 everywhere

Solve the continuity equation

In cells where h < 0, limit outward fluxes

Solve the momentum equations

Extensively validated flow model

- Erpicum, Dewals et al. (2009), Engineering Applications of Computational Fluid Dynamics
- Roger, Dewals et al. (2009), J. Hydraul. Res.
- Dewals , Kantoush et al. (2008), Env. Fluid. Mech.
- Erpicum, Meile *et al.* (2008), *Int. J. Numer. Methods Fluids*
- Dewals , Erpicum et al. (2006), J. Hydraul. Res.
- Erpicum, Dewals *et al.* (in press), J. Comput. Appl. Math.
- Kerger, Archambeau *et al.* (accepted), *Int. J. Numer. Methods Fluids*

← ITERATIVE PROCESS AT EACH TIME STEP

EFFICIENT BECAUSE RESTRICTED TO "DRYING CELLS"

Modelling system

Flow model

Eulerian model

Lagrangian model

Conclusion

Université U 9

EULERIAN MODEL: MULTI-SCALE IN TIME

COMPLEMENTARITY OF THE COUPLED AND SEMI-COUPLED MODELS: RESERVOIR SEDIMENTATION AND SEDIMENT FLUSHING

ArGEnCo

www.hach.ulg.ac.be

Reservoir sedimentation (model B, 20 years)

aulic Constructions (HACH)

Flow model **Motivations** Modelling system

Lagrangian model

Conclusion

05.5

www.hach.ulg.ac.be

Université 0

STEADY FLOW AND EQUILIBRIUM BED PROFILE

MATHEMATICAL BACKGROUND

Based on an obvious analogy between:

- steady flow continuity equation
- steady continuity equation

$$\frac{\partial}{\partial x}(hu) + \frac{\partial}{\partial y}(hv) = 0 \qquad \frac{\partial q_{bx}}{\partial x} + \frac{\partial q_{by}}{\partial y} = 0$$

Solid unit discharges proportional to flow unit discharges

STEADY FLOW AND EQUILIBRIUM BED PROFILE

MATHEMATICAL BACKGROUND

Based on an obvious analogy between:

- steady flow continuity equation
- steady continuity equation

$$\frac{\partial}{\partial x}(hu) + \frac{\partial}{\partial y}(hv) = 0 \qquad \frac{\partial q_{bx}}{\partial x} + \frac{\partial q_{by}}{\partial y} = 0$$

- Solid unit discharges proportional to flow unit discharges
- Use of a transport capacity law

$$\bullet \alpha q = q_b = f(s, d, g, n, q, z_s - z_b)$$

 Correct the bottom elevation and update the flow field

STEADY FLOW AND EQUILIBRIUM BED PROFILE

MATHEMATICAL BACKGROUND

Based on an obvious analogy between:

- steady flow continuity equation
- steady continuity equation

$$\frac{\partial}{\partial x}(hu) + \frac{\partial}{\partial y}(hv) = 0 \qquad \frac{\partial q_{bx}}{\partial x} + \frac{\partial q_{by}}{\partial y} = 0$$

- Solid unit discharges proportional to flow unit discharges
- Use of a transport capacity law

$$\bullet \alpha q = q_b = f(s, d, g, n, q, z_s - z_b)$$

• Correct the bottom elevation and update the flow field

ArGEnCo – MS²F - Hydrology, Applied Hydrodynamics and Hydraulic Constructions (HACH)

STABILITY ANALYSIS

$$\operatorname{Fr} < \frac{\sqrt{2}}{2} \approx 0.7$$

Dewals, Erpicum *et al.* (2008), *Houille Blanche – Rev. int.* Dewals, Erpicum *et al.* (2009); *SHF workshop*

Motivations Modelling system Flow model Eulerian model Lagrangian model LAGRANGIAN MODEL FOR NON-EQUILIBRIUM SEDIMENT TRANSPORT

PRINCIPLE AND MATHEMATICAL BACKGROUND (INCL. STOCHASTIC COMPONENT)

Conceptual model: momentum equation for particles

$$\frac{du_p}{dt} = F_D(u - u_p) + g_x\left(\frac{\rho_p - \rho}{\rho_p}\right) + F_x$$

Drag

Gravity and Lift, ... Buoyancy

• Simplified approach:

$$\mathbf{v}_{s} = \left(u + \boldsymbol{\varsigma}_{x} \boldsymbol{\vartheta} \right) \mathbf{e}_{x} + \left(v + \boldsymbol{\varsigma}_{y} \boldsymbol{\vartheta} \right) \mathbf{e}_{y} + \left(-w_{s} + \boldsymbol{\varsigma}_{z} \boldsymbol{\vartheta} \right) \mathbf{e}_{z}$$

= particle velocity

 \mathbf{e}_{x} , \mathbf{e}_{y} and \mathbf{e}_{z} = unit vectors along x, y and z ;

 $\zeta_x, \zeta_y, \zeta_z, =$ random variables between 0 and 1 \hat{W} and \hat{W} = characteristic fluctuating velocity a

V,

= characteristic fluctuating velocity along horizontal and vertical (deduced from de k if a k- ε model is used, otherwise from the shear velocity $u_* = (\tau_b/\rho)^{0.5}$

Output: location of deposits
 No feedback on flow field

Conclusion

Eulerian model

el Lagrangian model

Conclusion

LAGRANGIAN MODEL FOR NON-EQUILIBRIUM SEDIMENT TRANSPORT

APPLICATION SETTLING BASINS

Inlet into a storm tank

Storm tank of Rosheim (Alsace, France)

- Sedimentation must be either maximized (settling basins) or minimized (storage facilities)
- Existing empirical knowledge for deposits *quantities* (trapping efficiency ...)
- Predicting deposits *location* needed for optimal reservoir operation and maintenance

www.hach.ulg.ac.be

Flow model

Eulerian model

Lagrangian model

Conclusion

Available data for validation of sediment deposition

Dufresne, Dewals et al. (submitted), J. Hydraul. Eng.-ASCE

Modelling system

Flow model

Eulerian model

Lagrangian model

Conclusion

Numerical modelling of sediment deposition

\rightarrow Dewals *et al.* (2008), Env. Fluid Mech.

- Constraint for modelling: multiscale in space and time, accounting for different transport mechanisms
- 2D depth-averaged modelling, still an appealing compromise
- Work in progress:
 - implementation of sediment transport model within 2DV/3D flow models (developed by our research group)
 - non-Newtonian constitutive laws for the fluid-sediment mixture in case of high concentration in solid particles

