

nce 25 – 26 Novemb <u>The future of sediment management in Europe</u>

WATER FLOW AND SEDIMENT TRANSPORT IN THE LOWER DANUBE RIVER ROMANIAN RETROSPECTIVE and PERSPECTIVE Dr Dan G Batuca National Institute of Hydrology and Water Management, Bucharest

Danube River Basin in Europe

- Second largest river basin in Europe:
 - catchment of 801,463 km²
 - shared by 18 countries

Danube River

The "Great Blue Diagonal" of Europe

- Second longest river in Europe
 - 2857km-long in 9 riparian countries
 - Flows through 4 capital cities
 - Vienna
 - Bratislava
 - Belgrade
 - Budapest

and other major cities in the region

25 – 26 November 2004, Venice

Danube River at Vienna

25 – 26 November 2004, Venice

Danube River at Budapest

Danube River Network

Major tributaries

25 – 26 November 2004, Venice

Upper Danube

Middle Danube Lower Danube

IMPORTANCE OF THE LOWER DANUBE RIVER

- Major international watercourse
- Multipurpose used by riparian countries
 - power generation
 - fluvial navigation
 - water supply
 - agriculture water(irrigation)
 - domestic water (drinking)
 - industrial water
- Fishing
- Tourism and recreation

25 – 26 November 2004, Venice

IMPORTANCE OF THE LOWER DANUBE RIVER man-made structures and works

- Iron Gates 1 and 2 great systems for
 - power generation
 - fluvial navigation
 - flood attenuation
- Great rail-road bridges at Giurgiu- Russe and Calafat (future)
- Embankments for flood protection
- Intakes for water supply
- Sand mining

IRON GATES I (1972) and II (1985) – Romania and Yugoslavia

25 – 26 November 2004, Venice

25 – 26 November 2004, Venice

IRON GATE I

1972

The Iron Gate I system consists of two symmetrical parts, each comprising:

- a navigation lock
- an overflow concrete dam (1278 m long with 14 spillways)
- a non-overflow earth dam
- a hydropower plant (6 turbines)

25 – 26 November 2004, Venice

IRON GATE II

1985

The Iron Gate II system consists of two dams:

- an overflow concrete dam on the main Danube channel (1003 m long)
- an overflow concrete dam on the Gogos branch
- a hydropower plant (20 turbines)
- a navigation lock

ROMANIAN RETROSPECTIVE

SCIENTIFIC & PRACTICAL INVESTIGATION in the Lower Danube River – ROMANIAN RIVER REACH

OBJECTIVES:

- Evaluation of hydrological & hydraulic regime:
 - water flow regime
 - sediment transport regime
- Evaluation of river processes & morphological changes:
 - thalweg changes
 - cross-sectional changes
- Determination of water & sediment quality

MEANS:

- Field data
 - collected at permanent hydrometric stations
 - during periodic field campaigns
- Laboratory data

<u>Permanent Hydrometric Stations</u> in the Lower Danube River in Romania

<u>Periodical Field Measurement Campaigns</u> <u>along the Lower Danube River in Romania</u>

Type of Data Collected in the Field

- Physical properties of water and sediment
- Hydraulic flow parameters
 - Water level and discharge
 - Flow velocity and depth
- Sediment (bottom & suspended) data
 - Sediment discharge and turbidity
 - Sediment size distribution (granulometry)
- Bathymetric data
 - River geometry (long & cross profiles)

<u>WATER – SEDIMENT REGIME</u> (history – based on field information, data)

- Up to year 1965 <u>"NATURAL REGIME"</u> (UNDISTURBED)
- From 1965 to 1985 "TRANSIENT REGIME"

Great changes in time due to:

- * natural causes (climate)
- * anthropic works & activities

 From 1985 to present – <u>"ACTUAL REGIME"</u> (DISTURBED)

Water flow regime – Danube River

Water flow regime – Tributaries

Discharge Rating Curves

22

Sediment transport regime – Danube River

Sediment transport regime – Tributaries

Sediment transport equations

Natural – Actual Sediment Transport Regimes

ACTUAL WATER – SEDIMENT REGIME

Morphological River Bed Changes thalweg degradation & aggradation

Morphological River Bank Changes high bank erosion (terrace)

Morphological River Bank Changes flat bank erosion (flood area)

Morphological Changes alluvial island formation

A second s

Morphological Changes alluvial bar formation - dredging

ROMANIAN PERSPECTIVE via INTERNATIONAL PROJECTS

MONDAN PROJECT

Integrated cross-border monitoring system for the Lower Danube River

Proposed by

Romanian Ministry of Environment and Water Management and Bulgarian Ministry of Transport and Communication

MONDAN PROJECT

- Project type: Bilateral Danube River from Timok to Calarasi-Silistra (Improvement of infrastructure)
- Framework: EU Phare
 Cross Border Cooperation Romania Bulgaria
- Authority: Ministry of Environment and Water Management RO
 Ministry of Transport and Communications BG
- Contribution: ICPDR Vienna
 Danube Commission Budapest

MONDAN PROJECT

- Project Type: Structural improvement of monitoring systems (hydrometric network)
- Project Duration: 3 years (2005-2007) in 3 phases:
 * Phase 1 2005
 * Phase 2 2006
 * Phase 3 2007
- Estimated Cost:

6,8 MEuro

To promote co-operation between Romania and Bulgaria in the field of:
 Environmental protection
 Fluvial navigation and transportation

- To join and harmonize the hydrologic and hydrometric experience in both countries with current international requirements, including the WFD
- **U** To improve the existing monitoring systems in the Lower Danube River
- To develop a reliable working tool for water management policy-makers, decision takers and investors in the Lower Danube River

PROJECT GOALS (1)

- Development of an advanced integrated monitoring system for the Lower Danube River, along the Romanian – Bulgarian reach
- Modernization of existing surveillance and hydrometric systems, including:
 - Modernization of 14 hydrometric stations, from which
 - 8 in Romania
 - 6 in Bulgaria
 - Development of 3 new stations in Bulgaria
 - Collection of field data, including:
 - hydrological data
 - sedimentological data
 - morphological data
 - water-sediment quality data
- Acquisition of 2 new specialized vessels for hydrometry, survey and research

PROJECT GOALS (2)

- Implementation of a Cross-Border Danubian Computer Model (CBDM) for the Lower Danube River, with advanced modules for:
 - Water flow dynamics
 - Sediment transport
 - Morphological river changes
 - aiming to provide hydrologic and morphologic warning and forecasts during:
 - Low flows
 - High flows
 - Exceptional events (floods)
 - Accidental pollution
- Implementation of advanced technologies and techniques:
 - Digital cartography
 - Geographical Information System (GIS)
 - GPS and DGPS

MONDAN PROJECT

COMPUTATIONAL STRATEGY

IHP – Regional Hydrological Co-operation Programme of the Danube Countries

PROJECT SEDAN

Modeling of erosion, transport and sedimentation processes in the Danube River and its major tributaries

Proposed by

IHP - Romanian National Committee within National Institute for Hydrology and Water Management, Bucharest

- Project type: Regional Danube River Basin
- Framework: IHP UNESCO
 Regional Hydrological Co-operation Program
 of the Danube Countries
- Authority: IHP-UNESCO Paris
 UVO ROSTE Venice
- Contribution: ICPDR Vienna IAD Vienna Danube Commission Budapest

- Coordinating country:
- Cooperating countries:
- Project Duration:

Romania

Danube countries (IHP National Committees)

5 years (2005-2009) in 3 phases: * Phase 1 – 1year (2005) * Phase 1 – 2 years (2005-2006) * Phase 2 – 3 years (2007-2009)

• Estimated cost:

2,0 MEuro

SEDAN PROJECT – Background

Previous actions:

- **J** 2003 Sofia and Venice
- \$2004 Bucharest, Brno, Paris and Vienna

Next actions:

↓2005 – Vienna, Passau and Belgrade

Contribution of the IHP Danube Countries to ISI International Sedimentation Initiative

Global Evaluation of Sediment Transport

- **U** To promote co-operation between Danube countries
- **U** To join and harmonize the Danube countries experience
- To improve the actual level of knowledge in the field of river modelling (flow and sediment)
 Particular view on erosion, transport and sedimentation processes in the Danube River Basin
- To develop a reliable working tool for water management policy-makers, decision-takers and investors in the Danube River Basin
- **U** To contribute to International Sedimentation Initiative (ISI GEST Project)

PROJECT GOALS (1)

To develop and use a Sediment Databank (<u>SEDAT</u>) for the Danube River and its major tributaries, including:

- hydrological data
- sedimentological data
- morphological data
- quality data

Type of data & information:

- historical data
- existing data (from 1985 to 2000 or more)
- new collected data
- **!!! SEDAT freely accessible for Danube countries !!!**

SEDIMENT DATABANK - SEDAT

To establish the Current Budget and Balance of Sediment (SEDBUD & <u>SEDBAL</u>)

In the Danube River and its major tributaries:

- » Suspended load
- » Bed-load
- » Total load
- » Sediment granulometry

!!! SEDBUD & SEDBAL - freely accessible for Danube countries !!!

To develop and use a Danubian Computer Model <u>SEDMOD</u> with advanced modules for:

- * water flow dynamics,
- * sediment erosion and transport,
- * morphological river changes,

aiming to provide:

- * warnings
- * improved forecast procedures
- * calculation-simulation procedures

Short, medium, long term

Low, medium, high flows

applicable to the Danube River and its major tributaries.

DANUBIAN COMPUTER MODEL - SEDMOD

PROJECT GOALS (4)

To develop and use an Information System (SEDIS) for sedimentation-morphological status of the Danube River and its major tributaries,

Dedicated web-site for wide dissemination for authorities, public and media:

- Information
- Data
- Warnings

EXPECTED PRACTICAL RESULTS

- Project Implementation & Coordination Unit <u>PICU</u>
- Technical reports and scientific papers
- Training programmes for specialists from Danube countries
- Workshops and meetings

PROJECT OUTPUTS

FINANCING & BANKABILITY

- Estimated total amount:
- Sharing between Danube countries: 0.8 MEuro from which:
 - contribution of Romania:
 - contribution of other countries:
- Needs for external support:

0.3 MEuro 0.5 MEuro 1.2 MEuro

2.0 MEuro

