

The risks of remobilization of historically polluted sediments in the Meuse

a (case) study by

Dick Bakker, Jos van Gils and Jos Brils

Contents

- Background and character of the study (2)
- Description of the case study (2)
- Results of the case study (7)
- Conclusions and recommendations (2)

Background of the study

- Climate change will probably lead to more extremely high river discharges and floods.
- Several research projects, including EU-projects AquaTerra and Modelkey concluded that these floods and storm flows will remobilize historically contaminated soil or sediment from riverbanks and floodplains.

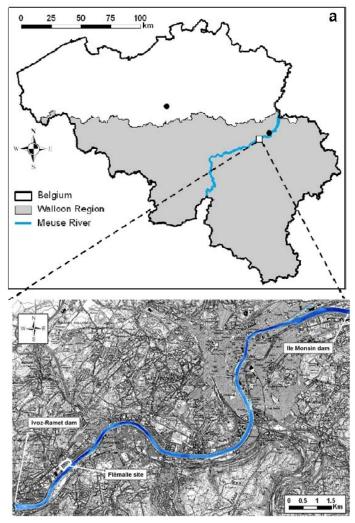
but:

• Although scientific (and empirical) evidence is overwhelming, it resulted in hardly any policy responses yet (Jos Brils, Meuse Conference 2010).

possible reason:

 A lack of appealing examples of quantified 'cause-impact relationships'.
our challenge!

Character of the study

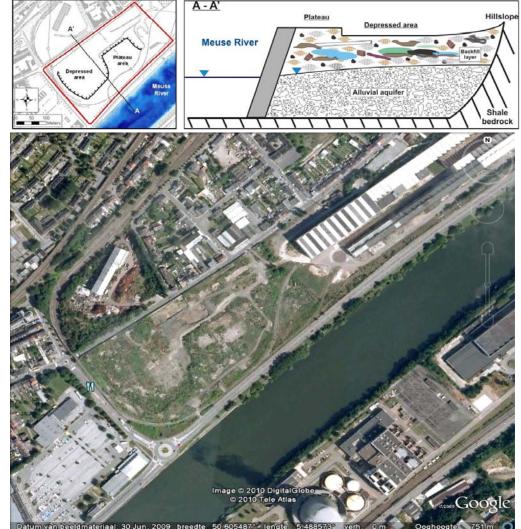

 We had a very limited budget, so no expensive experiments or monitoring or even extensive model calculations

Some indicative model calculations with readily available model and data, for illustrative purposes only.

- Case study of one polluted river bank site being partly eroded by assumed extreme high water event in Meuse river basin •
 Our message: this <u>could</u> happen at <u>comparable</u> sites, no evidence this <u>will</u> happen at <u>this specific</u> site!
- Intention (hope) that this example is appealing enough to 'shake up' water managers and policy makers and start anticipating measures.

Description of the case study (1)

- Meuse river basin (many polluted sites in upper (Walloon) region;
- Flémalle former coke plant site (BTEX, PAH, heavy metals, oil); Data from PhD thesis Battle Aguilar, J. (2008);
- Benzene, fluoranthene and cadmium chosen as representative pollutants;
- EXPOBASIN model was forced with 1993 hydraulic flood data (3050 m³.s⁻¹ at Eijsden);
- Erosion estimate: 1,4% (10,920 tons) of soil is eroded during 24 hours;



Graphics from: Battle Aguilar, J. (2008), PhD Thesis

5

Description of the case study (2)

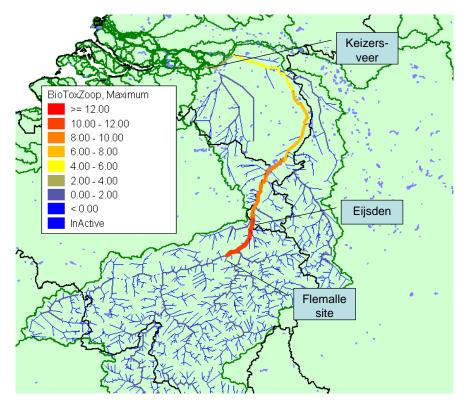
- Median soil quality Flémalle:
 - Benzene 80 mg/kg
 - Fluoranthene 460 mg/kg
 - Cadmium 2.67 mg/kg (P₉₀ 25 – 60x higher)
- Eroded mass of pollutant:
 - Benzene 874 kg (1.07x ann. av.)
 - Fluoranthene 5023 kg (8x ann. av.)
 - Cadmium 29.2 kg (0.015x ann. av.)
- Annually averaged background concentrations of pollutants and SPM from monitoring point Eijsden;

Graphics from: Battle Aguilar, J. (2008), PhD Thesis

Results: Water quality

 Calculated maximum concentrations at Eijsden due to erosion event (without backgrond) compared with measured concentrations at Eijsden:

	Calculated total concentration (µg/l)	Calculated dissolved concentration (µg/l)	Measured total or dissolved concentration (µg/l)
Benzene	3.32	3.29	Avg = 0.034 Max = 0.51
Fluoranthene	18.67	1.1	Avg = 0.049 Max = 0.65
Cadmium	0.108	0.004	0.62 = Avg = 0.175 38.8 = Max = 35.2

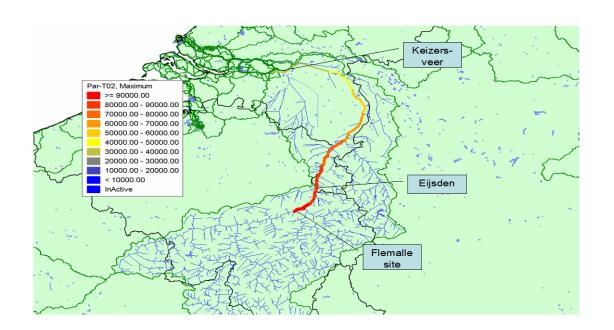


7

8th April 2011, Venice

Results: Effects of water quality

	Toxic units for Invertebrates	Toxic units for Fish	Toxic units for Algae
Benzene	0.01	0.19	0.10
Fluoranthene	9.94	33.9	1.56


Maximum Toxic units for Daphnia and fluoranthene

- Toxic units based on dissolved concentrations and LC₅₀ values for:
 - Daphnia (Water flea);
 - *Pimephales (*Carp like fish);
 - Selenastrum (Algae species).

Deltares

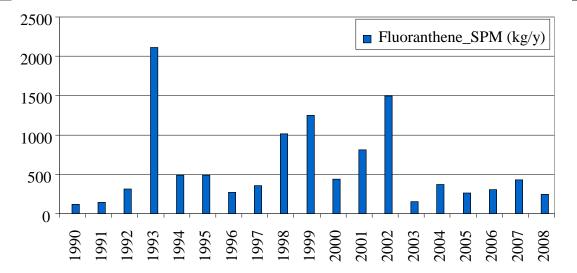
Results: Quality of deposited sediment

	Eroded mass (kg)	Mass passing Eijsden (kg)	Mass passing Keizersveer (kg)	Retention up to Eijsden	Retention up to Keizersveer
Benzene	874	873	856	0.1%	2%
Fluoranthene	5023	4915	1714	2%	66%
Cadmium	29.2	29	10	2%	67%

- Retention mainly determined by sorption (partition coefficient).
- Benzene concentrations mainly determined by dilution, dispersion and volatilization.

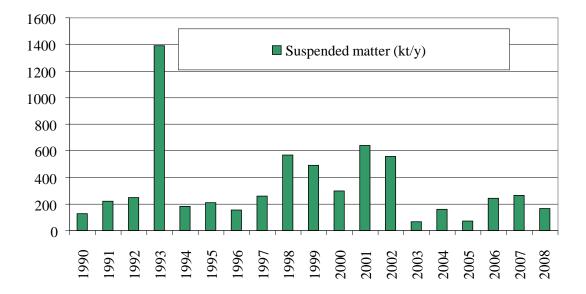
Deltares

Fluoranthene in deposited sediment (µg/kg dw)


9

Results: Effects of sediment quality

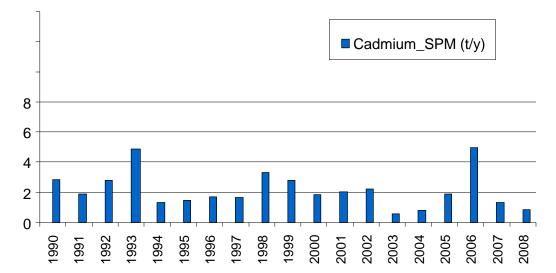
Fluoranthene concentration	PAF (chronic EC50)	EQS (CIS-WFD) (1.1 mg/kg)	LC50 (3.4 – 5.1 mg/kg)
Eijsden 90 mg/kg	48%	82x	18-26x
Keizersveer 30 mg/kg	33%	27x	6-9x

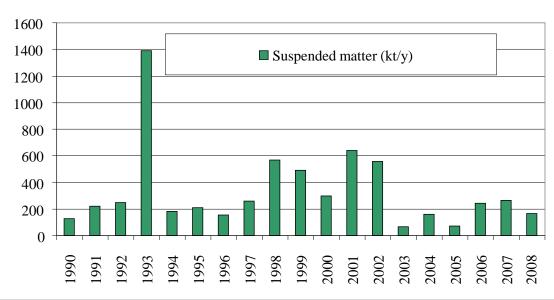

- If the contaminated suspended matter settles in floodplains, not only effects on the ecosystem occur, but also economic damage:
 - Reduced possibilities for grazing cattle;
 - Reduced possibilities for recreation;
 - Higher costs for dredging and soil excavation.

Fluoranthene loads in perspective

• This case study:

Estimated eroded total fluoranthene mass: 5023 kg, which • 2.4x the 1993 annual load (• 2100 kg).




• This case study:

Estimated total eroded soil mass: 11 kton, which is 0,8% of the 1993 SPM annual load (1400 kt).

Deltares

Cadmium loads in perspective

• This case study:

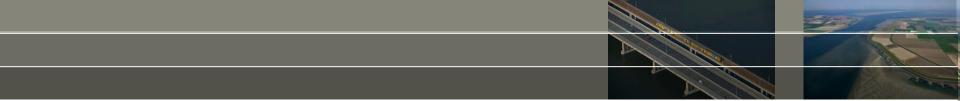
Estimated eroded total cadmium mass: 29.2 kg, which is 0.58% of the 1993 annual load (• 5.000 kg).

• This case study:

Estimated total eroded soil mass: 11 kton, which is 0,8% of the 1993 SPM annual load (1.400 kt).

The performed tentative model calculations indicate that the contaminated sites along the upper Meuse present a potential hazard to the aquatic and benthic ecology in downstream areas;

- œ1% Erosion of just one contaminated site can already lead to considerable mortality amongst fish, invertebrates and algae;
- There are dozens of contaminated sites along the upper Meuse and floods like the 1993 flood (or even more extreme) are likely to occur in the future;


It seems therefore sensible to anticipate measures to prevent future erosion of contaminated Meuse river banks.

Conclusions

Recommendations

- We recommend to take a closer look at the issue of downstream risk from remobilized contaminants from Meuse river banks:
 - 1. Gather all available information on contaminated sites;
 - 2. Screen and prioritise these sites and contaminants, e.g. in the way as done in this case study;
 - 3. Define 'hot spot' sites and assess the risks posed by these sites in more detail.
- Extend this risk assessment with an economical impact analysis;
- Define possible cost effective measures to prevent future erosion of contaminated Meuse river banks.

14

Thank you for your attention!

