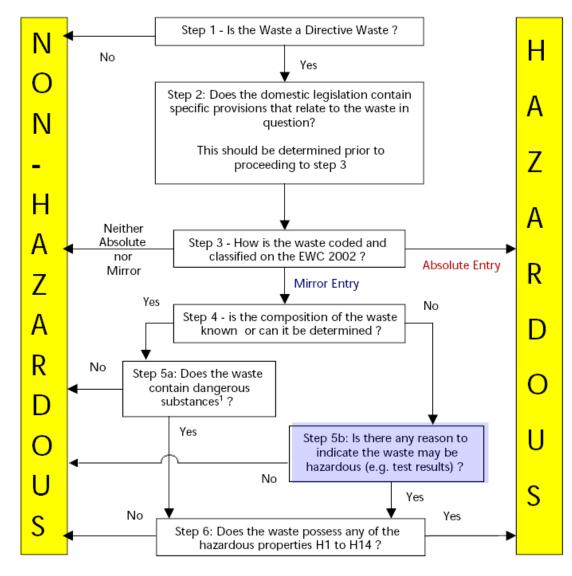


SUSTAINABLE REUSE SOULTIONS FOR DREDGED SEDIMENTS

Dr. Phil Studds - Ramboll


BRITISH WATERWAYS 1992 NATIONAL SEDIMENT SURVEY

Survey based on sampling canal network at 2 km intervals (2,200km)

Only two lengths of canal were identified as having contamination loadings signifying them as "special waste"

- mercury contaminated sediments in Scotland (associated with a former explosives factory)
- a short length of a canal in the North West England (associated with a discharge from chemical factory)

CHALLENGE OF USING GUIDANCE DOCUMENT (WM2)

Sediments suddenly classified as <u>hazardous</u> due to the <u>heavy metal</u> and <u>hydrocarbon</u> content

Guidance assumes <u>worst case compound</u> form if the holder of the waste can not identify species likely to be present...but....

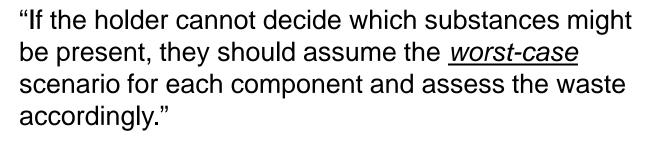
"the worse-case chemical form must be able to exist in the environment that the waste being sampled was taken from"

- Many were ignoring the latter point and interpreting all results using worst case speciation - regardless of likelihood of whether chemical compound could exist where found
- Challenge for the waste producer/holder to develop a greater understanding of their waste and present arguments for the characterisation and classification applied to the waste

ASSESSMENT

On behalf of British Waterways Ramboll undertook 'a study of characterisation of sediments with regard to new waste classification guidance'

The report output included:


- the likely <u>anion-cation relationships</u> present in dredged material for the commonly determined contaminants in BW sediments (carried out by literature search and basic chemistry)
- <u>specialist testing</u> to prove/substantiate conclusion of non-hazardous nature – i.e. SEM/XRF, SedNorm, Siroquant, ecotox...
- a recommended <u>testing specification</u> for sediments to ensure data provision for categorisation of dredged materials as either nonhazardous or hazardous materials

RANMAIDE

THE DEST OF 1980-1989

HEAVY METALS - Arsenic, cadmium, chromium, lead, mercury

chromium trioxide (CrO₃)

- H2 (combustible material)
- H7 (Cat 1 / 2 carcinogen)
- H8 (causes severe burns)
- H14 (very toxic to aquatic organisms)

di-chromium oxide (Cr₂O₃)

H4 (irritant)H5 (harmful)

METAL SPECIATION

For metal species it is <u>unlikely that they occur in levels</u> that would classify the sediment as "hazardous"

<u>Discounted</u> "worst case" species that were <u>highly soluble</u> or <u>highly</u> <u>reactive</u> and known not to be unlikely to occur in natural environment

METAL SPECIATION

Element	Speciation proposed	Ramboll / BW basis of speciation
As	As ₂ O ₃	Solubility, literature review, XRD / XRF
Ва	BaSO ₄	Literature review, XRD / XRF
Cd	CdS	Solubility, literature review, XRD / XRF
Cr	Cr ₂ O ₃	Solubility, literature review, XRD / XRF
Cu	CuS	Solubility, literature review, XRD / XRF
Hg	HgS	Solubility, literature review, XRD / XRF
Pb	PbSO ₄	Solubility, literature review
Мо	MoO ₃	Solubility, literature review, XRD / XRF
Ni	NiS	Literature review, XRD / XRF
Se	Se	Solubility, literature review, XRD / XRF
Zn	ZnS	Solubility, literature review, XRD / XRF

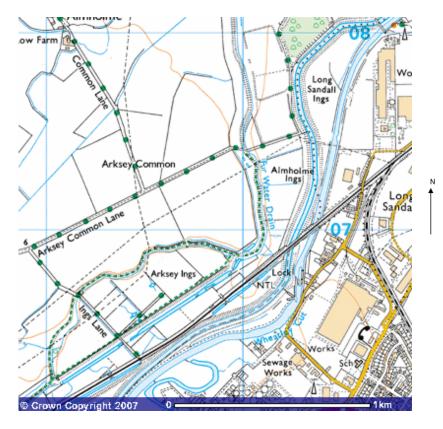
HYDROCARBONS – OILY WASTE

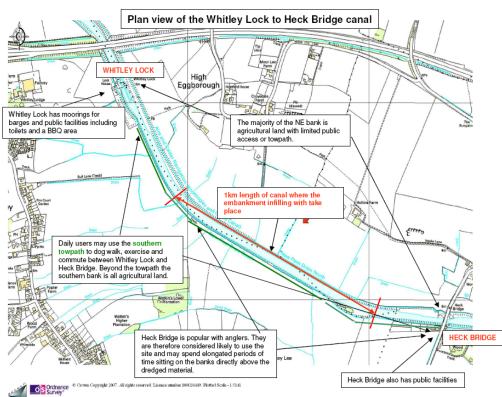
Characterise hazardous status of oily sediments based on analysis of:

- Petrol Range Organics (C₆-C₁₀) – 1,000mg/kg - category 1 & 2 carcinogens
- Diesel Range Organics (C₁₀-C₂₅) – 10,000mg/kg - category 3 carcinogens
- Lubricating Oils (C₂₅-C₄₄)
 - 1,000mg/kg category 1, 2 & 3 carcinogens
- <u>no exceedence</u> of PRO or DRO;

but lubricating oil > 1,000mg/kg

- PAH (BaP) marker test ? validity
- Potential issues with PEEM testing methodology between laboratories

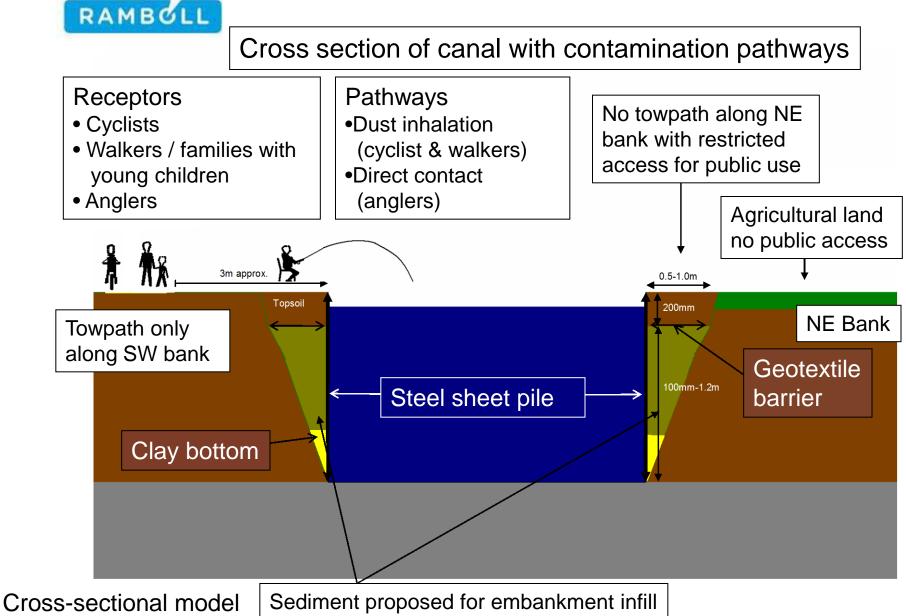

CASE STUDY - INTRODUCTION


- 100,000m³ of sediment dredged stored in 6No. lagoons at site in north England
- Propose to use the material as infill in the canal bank stabilisation works under a Paragraph 19 WML Exemption
- Waste classification of the material to prove non-hazardous
- Risk assessment -
 - Human Health to show suitable for use
 - Controlled waters
- Key issues metals & hydrocarbons

SITE LOCATION

ASSESSMENT AND SAMPLING STRATEGY

- Screening analysis
- Contaminant distribution
- Statistical analysis
- Additional sampling & analysis
- Used previous protocol to demonstrate non-hazardous



CONCEPTUAL SITE MODEL

COSTS SAVINGS

- Cost saving by avoiding disposal to hazardous landfill £1,000,000.
- Valuable space in a hazardous landfill saved
- Transport the dredgings using the waterway network - saving 10,000 vehicle movements on a 24 mile journey on largely congested roads.
- Using the material from Long Sandall avoided requirement for virgin materials saving £500,000

CONCLUSIONS

- Extending effort into <u>characterisation</u>, it is possible to demonstrate that material potentially classified as hazardous, is in fact non-hazardous
- This effort saves money and gives wider environmental benefits space in a hazardous landfill saved, transport impacts of moving material unnecessarily to hazardous landfill
- Mindset that sediments are a <u>resource</u>
- Project won Ground Engineering Sustainability Award 2009

Thank you

Dr Phil Studds Director Environment and Nature Phil.Studds@ramboll.co.uk 0113 245 8812 07931 709943