

Determination of BSAFs for freshwater fish and derivation of a sediment standard for PCBs: a case study of the Rhone basin

Marc BABUT¹, Christelle LOPES¹, Sébastien PRADELLE^{1,2}, Henri PERSAT³ & Pierre-Marie BADOT⁴

¹Cemagref; ²DREAL Rhône-Alpes; ³University of Lyon-CNRS; ⁴University of Franche-Comte-CNRS

Context, study objectives

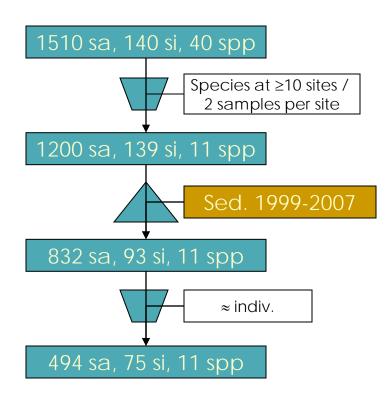
- Inventories of fish contamination by PCBs and dioxins since 2005-2006 in the Rhone basin
 - Bed sediments considered as the main source
- European policy on dioxin-related compounds Directive 2006/13/EC
 - 8 pg TEQ.g⁻¹(fresh weight) except eels, 12 pg TEQ.g⁻¹
- Water Framework Directive (WFD) implementation:
 - A sediment standard for PCBs (or dioxins) would not be very relevant if only based on toxicity to benthic invertebrates
 - Trophic transfer from sediment to higher trophic level organisms not covered by the draft guidance on environmental quality standard (EQS) derivation
- Objectives
 - Develop robust biota to sediment accumulation factors (BSAFs) for freshwater fish species (basin-wide)
 - Derive a "trigger value" for sediment (SQG: sediment quality guideline)

Background

- Most current definition
- Uncertainties, limitations
 - "connection" sediment fish (spatially and temporally)
 - knowledge of distributions generally missing
- Availability of 2 large databases in the Rhone basin:
 - Fish contamination inventory (2005-2009, ca. 2000 samples)
 - Sediment contamination (monitoring since 1993)

$$BSAF = \frac{C_{I}}{C_{soc}} = \frac{\frac{C_{org}}{f_{I}}}{\frac{C_{sed}}{f_{soc}}}$$

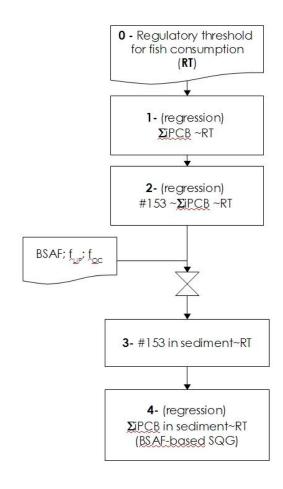
- C_{org} concentration in organism ($\mu g.kg^{-1}$ wet weight),
- C_{sed} concentration in sediment (µg.kg⁻¹ dry weight),
- f₁lipid fraction (g lipids / g ww),
- f_{soc} organic fraction (g OC / g dw)


Approach

- Dataset: matching the 2 databases
- Data selection
 - Fish: sampling protocol, number of samples
 - Sediment ↔ fish exposure
- BSAF determination
 - Bootstrap method

 BSAF variability
 - Site by site, 3 sets (fish, sediment PCB and TOC)
- Threshold derivation: indirect approach
 - Regulatory threshold (RT) refers to dioxins and related compounds
 - Most sediment data cope with indicator congeners (ΣiPCB)
 - BSAF more appropriate when referring to a single compound

Data selection


- Online fish database
 - Sites for which sediment data are available
 - Fish sampled 2007-2009
 - Spp present at ≥ 10 sites
 - ≥ 2 samples / site
 - Individuals or pools (restricted to 2 individuals same size)
- Online sediment database
 - Sites for which fish data are available
 - 1999 2007 (according to fish size-age)

http://www.rhone-mediterranee.eaufrance.fr/usages-et-pressions/pollution_PCB/basepcb

Sediment threshold derivation

- TEO correlated to ΣiPCB
 - unless local dioxin sources
- More chlorinated congeners (e.g. #153) correlated to ΣiPCB in fish and sediment
- Uncertainty on the SQG
 - Confidence intervals for each parameter (slope and intercepts) of successive regressions

Overview of fish data

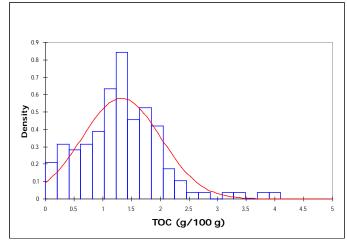
- Consistent relationship size / weight
- Few non-detects (less chlorinated #)
- Concentration ranges
- Almost no relationship
 - weight / lipid content
 - weight / PCB
 - lipid content / PCB
- Distributions normal (gaussian) or log-normal
- #153 correlated to ΣiPCB (whole set, each species)

Pearson similarity matrix

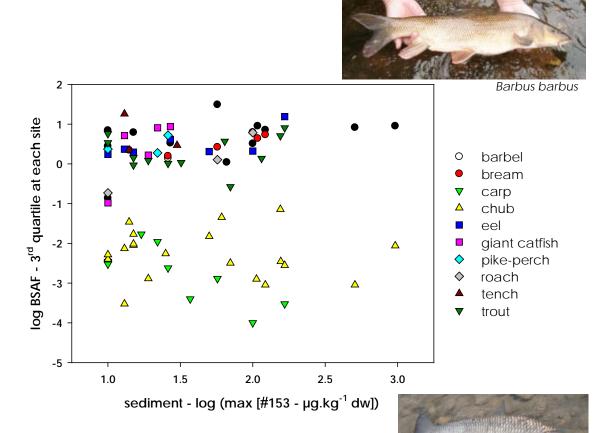
	Lip. Cont.	# 28	# 52	# 101	# 118	# 138	# 153	# 180
# 28	0.47							
# 52	0.56	0.83						
# 101	0.36	0.59	0.84					
# 118	0.45	0.54	0.84	0.97				
# 138	0.33	0.49	0.70	0.89	0.87			
# 153	0.31	0.43	0.65	0.84	0.83	0.94		
# 180	0.18	0.35	0.46	0.61	0.58	0.87	0.83	
Σ iPCBs	0.33	0.49	0.71	0.89	0.87	0.99	0.97	0.89

 $N = 457 \text{ samples} - \text{all } \# \ge LQ$

Overview of sediment data


Each # ⇒Σ

- 459 sets(75 sites)
 - ... 111 ≥ LQ
- Reliability?
- #153 correlated to ΣiPCB
- Some other congeners correlated to #153
- BSAF ⇒ #153
- Organic Carbon (TOC)
 - 157 samples (Rhône river)
 - 1st quartile 0.013 g.g⁻¹ (dw);
 3rd quartile 0.019 g.g⁻¹ (dw)

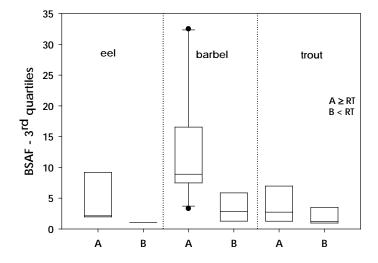

	N	adj R²	р
# 101	54	0.73	< 0.0001
# 118	49	0.15	0.003
# 138	88	0.94	< 0.0001
# 153	90	0.95	< 0.0001
# 180	68	0.90	< 0.0001

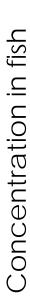
#i ⇒#153

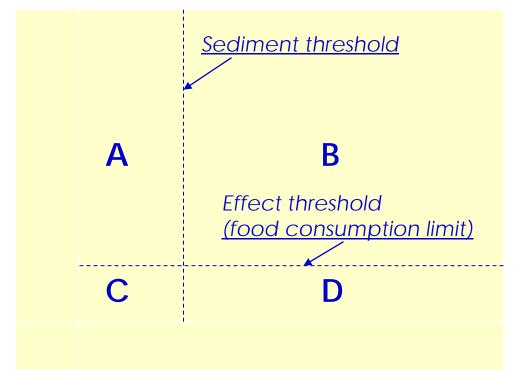
	N	adj R²	р
# 101	54	0.62	< 0.0001
# 138	83	0.89	< 0.0001
# 180	68	0.95	< 0.0001

BSAFs distribution

 No direct relationship with sediment concentrations

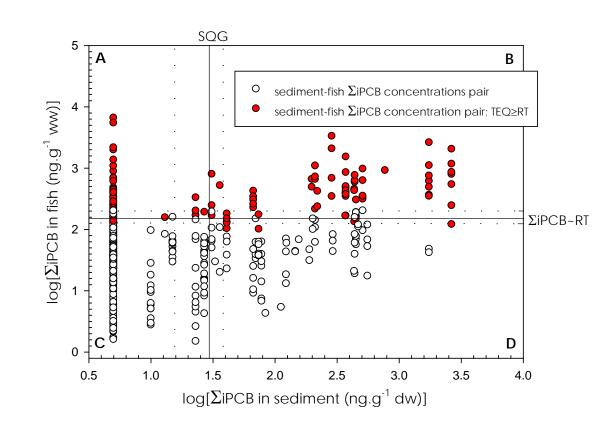

- Roughly 2 groups
 - · carp, chub
 - giant catfish, roach, bream, pike-perch, tench, trout, eel, barbel
- Low BSAFs in chub related to food regime
- Low BSAFs in carps may be related to physiology and habitat
- Highest BSAFs (3rd quartile)
 - eel 1.7 15.5
 - barbel 0.14 31


Refined approach


- 2 groups according to RT exceedence
 - G1 = fish \geq RT (A)
 - G2 = fish < RT (B)
 - Some <u>sites</u> belong to both groups
- Statistics = Kaplan-Meier for left-censored data for calculating quartiles in sediment
- Refined bootstrap BSAFs higher in G1 (A) than in G2 (B)

Sediments (µg.kg⁻¹ dw)

	G1	G2
N sites	33	69
N sites > LQ / N sites	64%	48%
1 st quartile	10	10
median	15	10
mean	80.1	29.7
std deviation	32.4	8.2
3 rd quartile	66	22
max	963	507


- Sensitivity = B/(A+B)
- Specificity = C/(C+D)
- Type I % = (D/(D+B))*100
- Type II % = (A/(A+C))*100
- Overall efficiency = (B+C)/(A+B+C+D)

Concentration in sediment

Adapted from Shine J.P. & al. (2003) Envir. Toxicol. Chem. 22/7 1642-1648

Calculation results / efficiency

- 26.6 ng. g⁻¹ dw
 [15.8 38.6]
 - based on 3rd
 quart. of barbels
 BSAF
- 62 % fishes correctly classified according to RT
- Sensitivity (B/A+B)0.50
- overall efficiency(B+C/A+B+C+D)0.65

Discussion

- Method consistency
 - Fish exposure "window"
- BSAF consistent with literature
 - Except for the carp
- Why BSAFs are different in G1 and G2?
 - Fatter fish specimens in G1
 - More contaminated sediments in G1
 - BSAF higher, but not correlated to sediment contamination
 - Bioavailability (among others?)
- Sediment threshold
 - Comparable to some extent to "co-occurrence" SQGs
 - ± comparable to Great Lakes fca-SQT (Bhavsar et al., 2010),
 but more robust / adaptable to varying local conditions

Bhavsar S.P., Gewurtz S.B. et al. (2010) Integ. Environ. Assess. Manag. 6/4 641-652

Conclusions & perspectives

- SQG applicability?
 - Not an environmental quality standard (EQS)!
 - SQG (screening): is the efficiency high enough?
 - Test on another dataset (nationwide)
- Compliance monitoring: towards a tiered approach?
 - Sediments at the first step (if possible)
 - Biota if sediment screening level exceeded
- Management guideline?

Thank you for attention

 study supported by a grant from DREAL Rhône-Alpes

