PCB-induced changes of a benthic community and expected ecosystem recovery following in situ sorbent amendment

Elisabeth Marie-Louise Janssen

Janet K. Thompson, Samuel N. Luoma, Richard G. Luthy

Outline

- Study site and concept
- Benthic community surveys
- Sediment chemistry
- Sediment remediation: in-situ amendment
- Biodynamic modeling

$$\frac{d C_{org}}{d t} = \dots$$

Study site

Hunters Point California

Polychlorinated biphenyls (PCBs)

Ecological risk

Fish consumption advisories

San Francisco Bay

EPA 823-R-97-006,1998

Fisher et al. Aquat Toxicol (45) 1999; **Murdoch** et al. ES&T (16) 1997; **Landrum** et al. Aquat Toxicol and Haz Ass (12) 1989

Concept

Benthic response to sediment pollution & remediation

Pearson et al. Mar Ecol Prog Ser (12), 1978

Trait-based Ecol. Risk Assessment

Horne et al. Arch Environ Contam Toxicol (37), 1999

Relative abundances [%]

	Reference Polluted		
Subsurface	56.30 % 16.75 %		
Surface	42.90 %	83.13 %	
Carnivores	0.80 %	0.12 %	

* PCBs (56ppm), Hg (15 ppm)

Study site

Hunters Point and reference sites in Central S.F. Bay

Benthic community surveys

- Shannon-Wiener Diversity Index: HP (1.87) Reference (2.09 to 2.89), intertidal (1.84 to 2.0),
- **Dominant species:** more species with abundance >1% at ref. sites
- Multi-Dimensional Scaling: Hunters Point clusters separately (stress >0.10)

Benthic community survey

Analysis by functional traits

Feeding	Reproduction	Position	exposure
Surface/subsurface carnivores	Egg layers	No barrier Tubed w/ tissue	more
Surface/subsurface deposit feeders	Brooders	Tubed w/ chitin	
Surface & filter feeders	Pelagic larvae	Chitin barrier	
		Shell barrier	less
Filter feeders		Cuticle	

• ANOVA tests with square root transformed relative abundances

Benthic community survey

Significant differences of benthic community

Hunters Point is depauperate in benthic organisms experiencing high exposure to contaminated sediment.

Sediment remediation

Sediment dredging - limited success

In Situ sorbent amendment

Injector: Compass Environ., Inc.

Roto-vator: Aquatic Environ., Inc.

Mixing 3.4% activated carbon into upper 30 cm

Cho et al. *Mar Environ Res (64),* **2007** and ES&T (43), **2009**

National Academies Press, 2007

Sediment remediation

Concept: In Situ sorbent amendment

Observation:

PCBs accumulate in coal/charcoal/coke more strongly bound & less bioavailable

Hypotheses:

Bioavailability can be changed by adding sorbent carbonaceous particle

PCB bioaccumulation can be reduced by up to 80 to 90%.

Promising but yet novel technique

Ghosh et al., ES&T (37) 2011

Ghosh, Zimmerman & Luthy, *ES*&*T* (37) 2003; **McLeod** et al., *ES*&*T* (42) 2008; **Janssen** et al., *ES*&*T* (44) 2010 11

Biodynamic Modeling

Surface& Filter

Deposit

Filter

Biodynamic Modeling

PCB tissue concentrations relative to sediment concentration

Battelle, Validation Study Hunters Point 2004; McFarland et al. Report in Oakland Harbor Deepening Project, 1994; Brajas Feasibility Study Hunters Point, 2008; Long et al. Environ Manag (19), 1995; San Francisco Estuary Institute online database

Biodynamic Modeling

Remedial success of in situ AC-amendment - reduced PCB bioavailability (AE) -

Reduction in PCB availability will comply with cleanup goal.

Thank you

Conclusions

Functional ecology

- identifies changes in benthic community and affected species
- highly exposed species are significantly less abundant

Biodynamic model

- links dietary routes and exposure
- predicts exposure scenarios
- translates changes in bioavailability to terms (sediment concentrations) that can be compared to cleanup goals

Sediment Chemistry

F1(55.88%) - physical F1 (62.68%) - chemical

Sediment chemistry differentiates Hunters Point from the reference sites Physical parameters are similar at Hunters Point and the reference sites

Benthic community surveys

Parametric Multi-Dimensional Scaling using Bray Curtis Dissimilarities

Hunters Point clusters separately from the reference sites.