

Assessment and Management of Sediment in Canadian Waters

Susan Roe, Linda Porebski and Roger Santiago

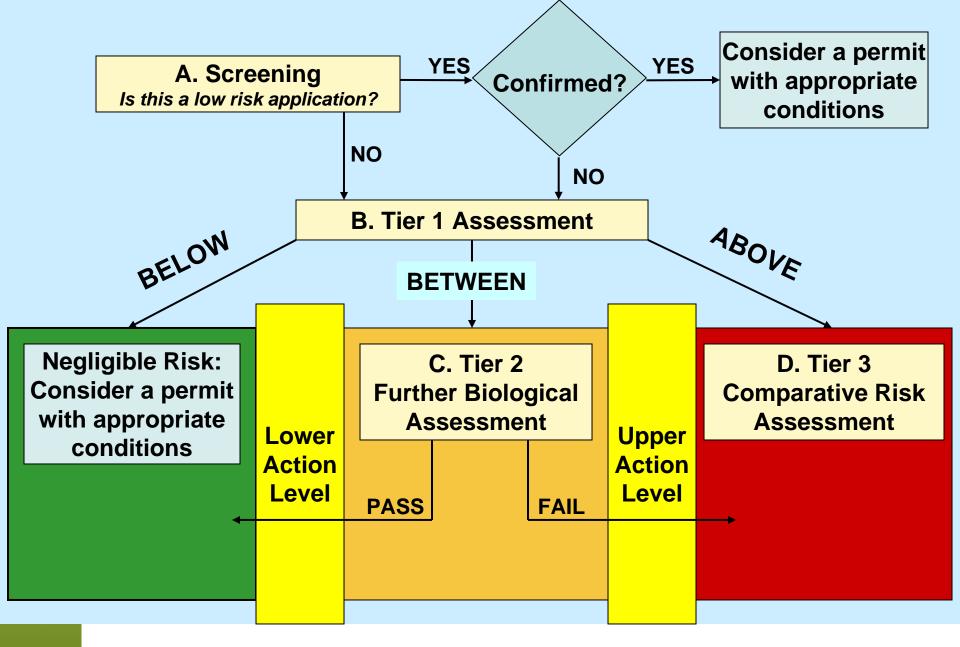
SedNet, 7-9 October 2009, Hamburg, Germany

Outline

- Federal Regulatory Programs (2 examples)
 - 1. Disposal at Sea
 - 2. Chemicals Management Plan
- Non-regulatory Program (2 examples)
 A. Federal Contaminated Sites Action Plan
 B. Canadian Sediment Quality Guidelines
- Tools (3 examples)
 - I. Sediment Quality Index
 - II. Decision-making Framework for Contaminated Sediment
 - III. Data Management Systems CABIN

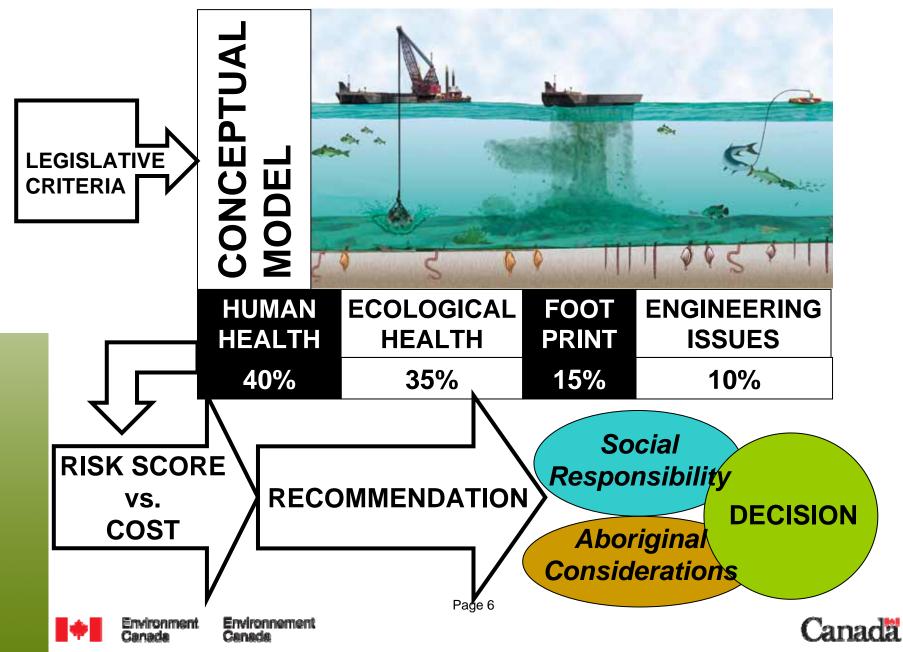
Current Situation in Canada

- Federal government has full or shared responsibility for coastal & marine waters, boundary waters & north of 60° parallel.
- Sediment protection, dredging, disposal at sea & clean-up are assessed & managed separately
- Protection & remediation goals vary by program & site



1. Disposal at Sea

- Under the Canadian Environmental Protection Act, 1999 (CEPA) "disposal at sea" is the deliberate disposal of approved substances at sea from ships, aircraft, platforms or other structures.
- a permit system controlling the disposal of waste and other matter at sea.
- permit is granted following a detailed assessment and sets conditions to protect the marine environment and human health.
- Each year in Canada, 2-3 million tonnes of material are disposed at sea, under this system, permits have been issued since 1975.
 - Mostly dredged material that must be moved to keep shipping channels and harbours clear for navigation and commerce
 - Also fisheries waste, ships, inert matter, uncontaminated organic matter and bulky substances.
 - discharges from land or from normal ship operations (such as bilge water) are not considered disposal at sea, but are subject to other controls



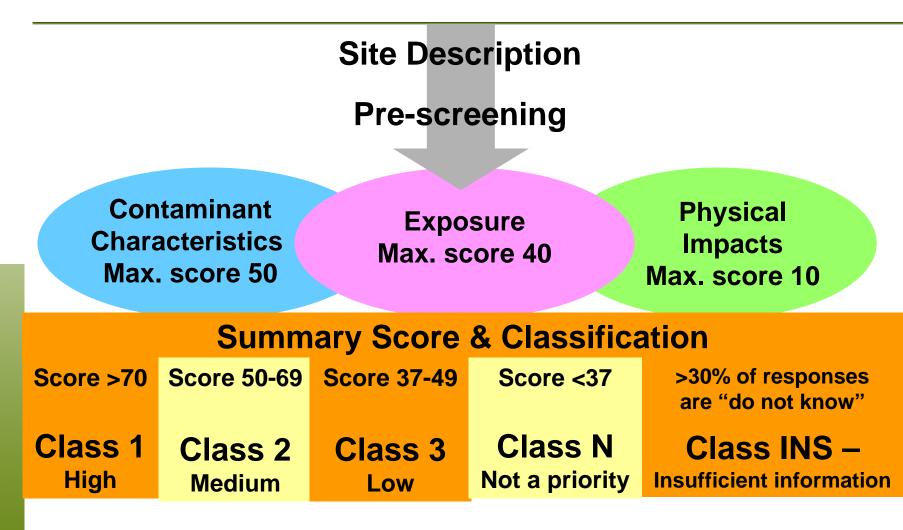
Tier 3. COMPARATIVE RISK ASSESSMENT

2. Chemicals Management Plan (CMP)

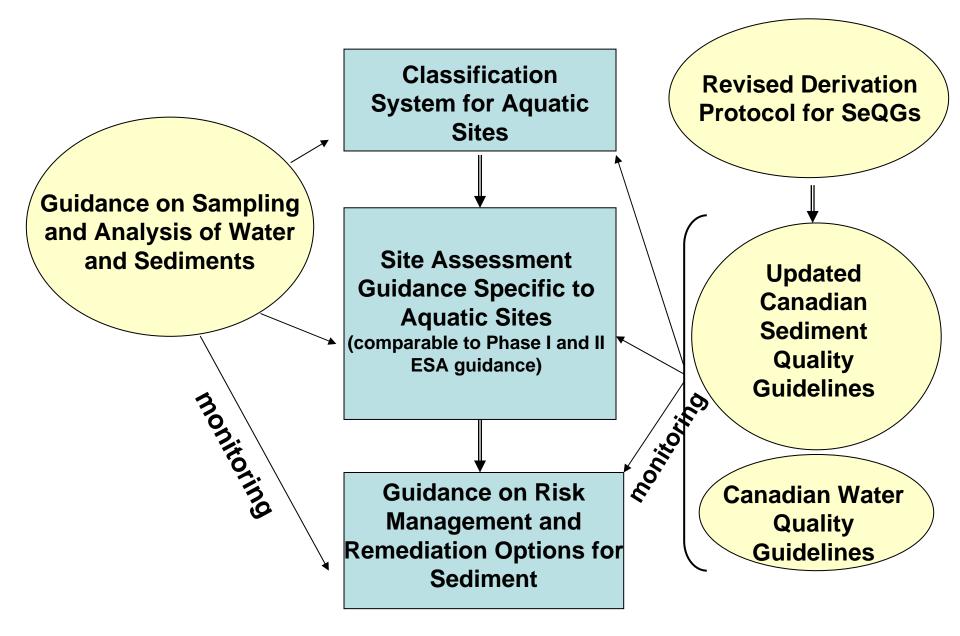
- Chemicals are "screened-in" via the categorisation of the CEPA Domestic Substances List (DSL)
 - 4,000 of 23,000 substances require further attention
 - 800 of these relevant to water
- Risk Assessment
 - Risk Quotient = Estimated Exposure ÷ Probable No-effect Concentration (PNEC)
- Risk Management
 - Variety of Management and Control Instruments
 - E.g., Pollution Prevention Plans, Performance Agreements
- Federal Environmental Quality Guidelines
 - Role in both RA (= PNEC) and RM (as performance benchmarks)

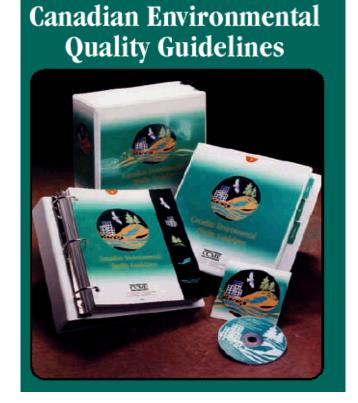
A. Federal Contaminated Sites Action Plan

- Aquatic Sites Classification System
 - to prioritize aquatic contaminated sites for action (immediate remediation, site-specific risk assessment, no action)
 - Customized tools in MS EXCEL
- Framework for Addressing Federal Aquatic Contaminated Sites (under development)



ent Environnem Canada

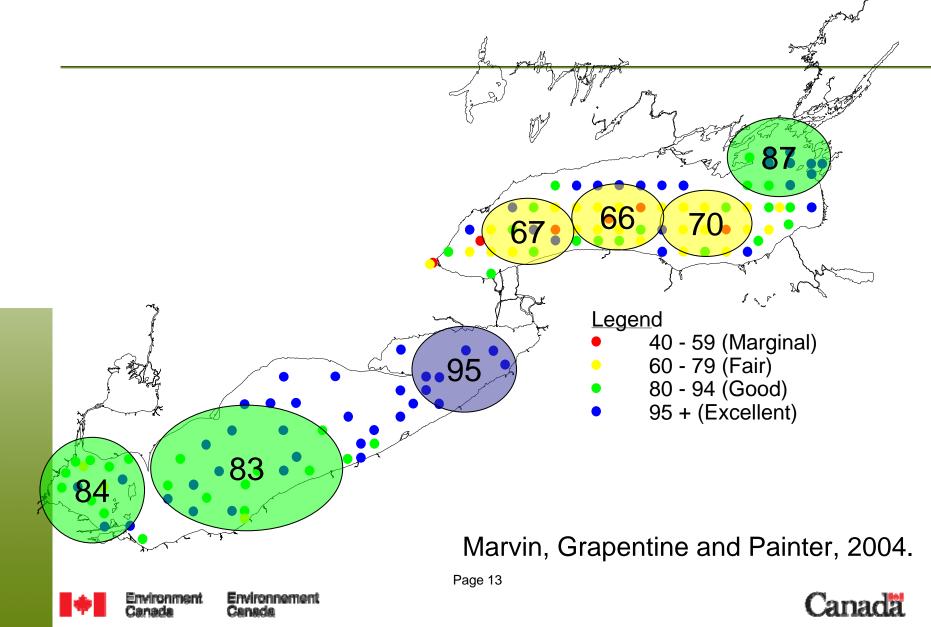

Aquatic Sites Classification System



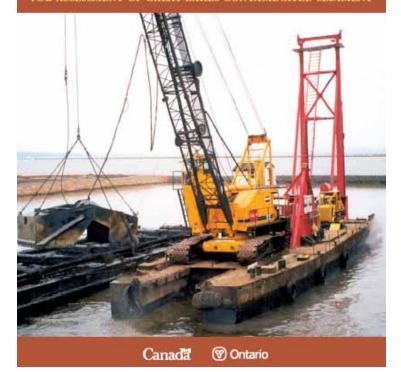
FRAMEWORK FOR MANAGEMENT OF AQUATIC CONTAMINATED SITES

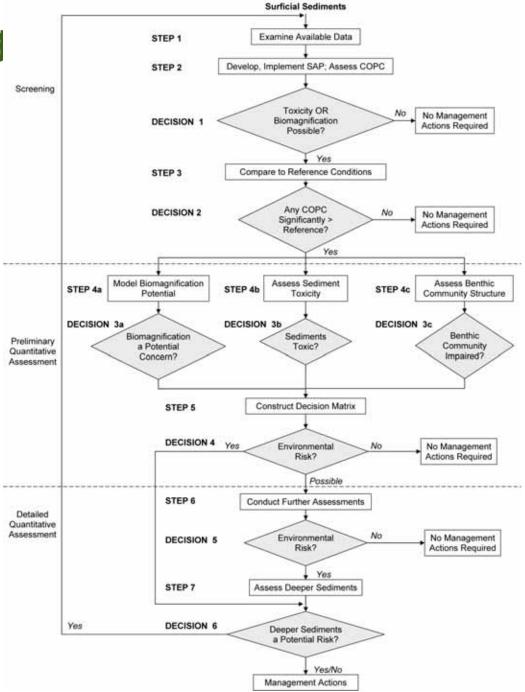
B. Canadian Sediment Quality Guidelines

- Developed by a national committee (federal, provincial, territorial)
- Protects all aquatic life and their life cycle during indefinite exposure to substances in bed sediments
- Protocol for derivation and most values published in 1995
- Undergoing re-assessment


I. Sediment Quality Index (SeQI)

- Integrates sediment chemistry data into a single metric
- Scores levels of multiple sediment contaminants relative to guideline or target from 0 (low quality) to 100 (high quality)
 - Scope (# of contaminants)
 - Frequency (how often either over time or area)
 - Amplitude (by how much)
 - It does NOT consider dose-response curves
- Based on CCME Water Quality Index
- First applied to Sediment by Grapentine, Marvin, and Painter, 2002


Sediment Quality Index



III. Decision-making Framework

CANADA-ONTARIO DECISION-MAKING FRAMEWORK FOR ASSESSMENT OF GREAT LAKES CONTAMINATED SEDIMENT

Full Decision Matrix

- 16 possible overall outcome scenarios (■ & **D** not distinct)
- guidance provided for further assessment to address uncertainty
- determination of significant potential for biomagnification (■) requires further assessment

Scenario	BULK SEDIMENT CHEMISTRY	Overall Toxicity ¹	Benthos Alteration ²	BIOMAGNIFICATION POTENTIAL ³	Assessment
1					No further actions needed
2					No further actions needed
3	0				Determine reason(s) for benthos alteration (Section 5.3)
4					Determine reason(s) for sediment toxicity (Section 5.3
5				•	Fully assess risk of biomagnification (Section 4.3)
6	■-□				Determine reason(s) for sediment toxicity (Section 5.3
7					Determine reason(s) for benthos alteration (Section 5.3) <u>and</u> fully assess risk of biomagnification (Section 4.3
8					Determine reason(s) for benthos alteration (Section 5.3)
9					Fully assess risk of biomagnification (Section 4.3
10	■-□				Determine reason(s)for sediment toxicity (Section 5.3) <u>and</u> fully assess risk of biomagnification (Section 4.3
11					Determine reason(s) for benthos alteration (Section 5.3) <u>and</u> fully assess risk of biomagnification (Section 4.3
12					Determine reason(s) for sediment toxicity (Section 5.3) <u>and</u> fully assess risk of biomagnification (Section 4.3
13					Determine reason(s) for sediment toxicity <u>and</u> benthos alteration ² (Section 5.3)
14		■-□			Determine reason(s) for sediment toxicity <u>and</u> benthos alteration (Section 5.3), <u>and</u> fully assess risk of biomagnification (Section 4.3
15					Management actions required ⁴
16	■-□		■-□	•	Management actions required ⁴

- Reference Condition Approach
- Reference sites: minimal impacts by human use
 - different geographic regions and stream sizes
 - Web accessible database
- sites suspected of being impaired are sampled and analysed
 - Training available
- Differences between organisms found at the reference and test sites quantify the degree of impairment at the test sites

Summary

- Interest in sediment quality issues is gaining momentum in Canada
 - New and revised programs
 - Chemical and biological components are recognised
- Need to better integrate programs
 - Define sediment quality goals
 - Provide consistent advice regarding sediment assessment tools
 - Provide common sampling guidance
 - Avoid duplicate research

Questions & Discussion

Susan Roe National Guidelines and Standards Office Environment Canada +001 819 994 8405 susan.roe@ec.gc.ca www.ec.gc.ca\ceqg-rcqe

nent Environnement Canada

