

'Sediments and Biodiversity: Bridging the Gap between Science and Policy', 7th International SedNet Conference, 6-9 April 2011, Venice.

Contents

- Cefas Role
- Dredged Material Assessment
- Sediment Quality Main Concerns
- Some Current Issues

Regulation & Assessment

N.B. Just covering assessment of the suitability of Dredged Material for disposal at sea

Cefas Role

- Technical advisor to Marine Management Organisation (MMO) for marine licensing
- Role is to provide independent scientific / technical advice on dredged material applications to assist the MMO in making decisions, ensuring:
 - environmental risks identified
 - evidence to back up the prediction of impact
 - robust information upon which to make a decision
- We draw upon a range of experts within Cefas e.g. chemistry, benthic ecology, ecotoxicology, fisheries and coastal processes

Dredged Material Assessment

Two part process:

- Information gathering
 - From the application form
 - Plus what we already know about the dredge area and the disposal area
- Detailed assessment
 - What are the environmental implications likely to be and are they acceptable?

Information Gathering

- Nature of dredged material
- Dredge areas history of site, possible contamination
- Method of dredging and disposal
- Disposal site characteristics

Nature of Dredged Material

Quantity

- Concerns are, can the disposal site cope with the quantities and types of material involved
- Tier 1. Physical properties
 - Silt, sand, gravel, clay
 - Concerns are how the material will behave once disposed to sea
- Tier 2. Chemical properties
 - Routine testing for potential contaminants following OSPAR guidelines
 - Concerns are toxicity, persistence and tendency to bioaccumulate in the marine environment

Chemical Properties

- Arsenic
- Cadmium
- Chromium
- Copper
- Mercury
- Nickel
- Lead
- Zinc

- PCB's (25 congeners)
- Tri-butyl tin compounds
- Polycyclic aromatic hydrocarbons (PAHs)
- Above need not be determined when:
 no known sources of contamination and
 - sediments are coarse and/or
 - Ievels of organic carbon are low.

Cefas

Other determinands may require analysis based on local information or historic inputs

Action Levels

Action	Level	2

Action Level 1

Contaminants of Concern

ACTION LEVELS		
Contaminant / Compound	Action Level 1	Action Level 2
	mg/kg Dry Weight (ppm)	
As	20	100
Нд	0.3	3
Cd	0.4	5
Cr	40	400
Cu	40	400
Ni	20	200
Pb	50	500
Zn	130	800
Organotins; TBT DBT MBT	0.1	1
PCB's, sum of ICES 7	0.01	none
PCB's, sum of 25 congeners	0.02	0.2
*DDT	*0.001	
*Dieldrin	*0.005	

Cefas

Background Trace Element Levels – Defra funded R&D Project AE0257

- Background levels established for As, Cd, Cr, Cu, Ni, Pb and Zn for most ports around England and Wales that require dredging and disposal of dredged material.
- Significant variation of 3 (Cr) to 17 (Cu) times in recommended background values for the elements around the various ports.
- Mineralised catchments e.g. Cornwall/Devon and North-East England clearly give high background values for most elements.
- Therefore, highly inappropriate to use a single background level for these elements for England and Wales

Sediment Bioassays

Sediment bioassays developed:

- 2 acute tests Corophium volutator and Arenicola marina
- >1 chronic test Leptocheirus plumulosa
- Bioassays trialled for dredged material assessment purposes
- However, have not been adopted for routine use due to concerns about reliability
- NB The Netherlands used bioassays for a few years and then dropped them from their testing procedure

Assessment and Advice

- Interpretation of collected information
 - Examination of most likely environmental problems
 - Consideration of mitigation options
- Advice provided to MMO
- Assessment of compliance of dredging with Water Framework Directive— see <u>http://www.environment-</u> <u>agency.gov.uk/business/sectors/116352.aspx</u>

Sediment Quality - Main Concerns

- TBT despite ban on use on vessels > 25m, levels in sediments in some areas still have very high levels, particularly near dry docks.
- Metals levels in sediments in heavily industrialised areas still contain high levels of for e.g. Zinc- historic contamination from mining.
- Pesticides of concern where agricultural runoff is high.
 Still finding high levels of DDT in some areas.
- PCBs historic contamination extremely persistent.
- PAHs historic contamination genetic damage.

Some Current Issues 1

Risk Assessments - using the best methods?

- What is the significance of contaminants, both those we analyse for and 20,000+ we don't. Should we develop screening tools?
- International pressure to develop sediment quality criteria – e.g. EU EQS Directive
- Compliance with the EU Waste Framework Directive

Some Current Issues 2

- Are we succeeding in protecting man and the marine environment, and at an acceptable economic cost?
 - Evidence from surveillance monitoring UKMMAS
 - > Validation monitoring:
 - Are we doing enough?
 - More cost effective monitoring tools /methods?

Thank You!

Any questions?

