

Sediment quality guidelines

Dr Mark Scrimshaw

Page 1

Working Group 2 Contaminant fate and behaviour

Work Package 3 Quality and impact assessment

What is sediment?

- matrix of materials
- "end of the path" for many materials
- 4 main components
 - interstitial water
 - inorganic (e.g. minerals and shell fragments)
 - organic matter (1 5%)
 - anthropogenic materials

- we understand the sediment and its physical environment
- we understand what contaminants are present
- we understand the sources

So what ?

An Objective-based Framework ?

- It is likely that many sites will have unique characteristics:
 - location, ecology, social and economic factors
- Principle we work to:
 - Safe Levels
 - Precautionary
 - Best Available Technology

Sediment Quality Assessment

Sediment Environmental Quality Standards

- WFD talks about sediments in relation to setting EQS
- EQS need to be developed for priority substances (where logKow > 5 or > 3?)
- EQS may be set for water sediment or biota
- Basis for setting sediment EQS
 - Not yet developed
 - Complexity of derivation

Setting values to EQS

- Putting a numerical value to an EQS
 - Suspended or bed sediments ?
- Receptors
 - Is data relevant
- Geographical range
- Degree of protection
 - PNEC or species sensitivity ?
- Uses
 - Is it mandatory or does failure trigger further study ?

Relevance of sediment EQS

- First tier of a WoE based risk assessment ?
- Probable effect concentration
- Health status a better indicator ?
 - Base decisions on boserved effects
- only for limited, priority compounds

Measures of Sediment Quality

- Sediment Toxicity (SEDTOX)
- Sediment Chemistry (SEDCHEM)
- Tissue Chemistry (TISCHEM)
- Pathology (PATHOL)
- Community Structure (COMMSTRU)

(Biological) Indices

- Classification of sites according to ecological quality
 - AMBI proposed in Spain (marine benthos)
 - Belgian Biotic Index; RIVPACS in UK
- Integrative Index of (Sediment) Quality
 - High
 - Good
 - Moderate
 - Poor
 - Bad

Weight of Evidence Approaches

- Take a holistic view and utilise reductionist data
- Combine a number of measures
 - Sediment chemistry
 - Community structure
 - Toxicity
 - biomagnification
- Whole is greater than the sum of the parts

Combining lines of evidence

- Differences in chemistry provide one line of evidence
- Differences in chemistry (exceeding an EQS) does not confirm effects
- Exceeding any EQS what action ?

Interpretation of data

- Understand relationships
 - relationship between sediment and tissue concentration
- Needs to be treated with caution
 - do not need bioaccumulation to observe effects
 - toxicity test and endpoints may be non-specific

Ideals and Reality

Regulation of inputs

- Biocidal Products Directive
- Criteria used for evaluation
 - toxicity
 - persistence
 - availability

Trapped in a cycle...?

Trapped in a cycle...?

Life Cycle Analysis ?

Improving quality = cost

- Proposed UK programme to reduce discharge of EDCs
- Water industry AMP 4 settlement
 - "Demonstration program"
 - Monitoring across a range of unit treatment processes
 - Installation of tertiary treatment (GAC ?) at two full scale works