

Solving societal challenges; working with sediments 23-26 September 2015, Krakow, Poland

Contamination of sediments in large riverine systems – assessment and its apprehension

Ewa Szalińska

Cracow University of Technology Faculty of Environmental Engineering

Contamination of sediments in large riverine systems – assessment and its apprehension

- "Sediment quality and perception"
- State of the system?
- How to evaluate spatial/temporal trends?
- What is the major concern and what to compare with?
- Has anything changed?
- Is it acceptable or negligible?

State of the system?

- Great Lakes AOCs (areas of conce
- areas that show severe environm......
- areas that fail to meet the general or specific objectives of the agreement
- BUI's (beneficial use impairments)
- a change in the chemical, physical, or biological integrity of the Great Lakes system sufficient to cause...
- 11of 14 BUI's related to sediment contamination

e.g. degradation of benthos; restrictions on dredging activities; degraded fish and wildlife populations...

Source: White Paper by the Sediment Priority Action Committee Great Lakes Water Quality Board International Joint Commission, 1997

State of the system?

- GLNP (Great Lakes National Program
- Two-phased sediment assessment approach
- 1st sampling of AOCs to pinpoint hot-spots
- 2nd delineation and remedial decisions

CUMULATIVE VOLUME OF SEDIMENT REMEDIATED IN THE U.S. GREAT LAKES BASIN SINCE 1997*

Source: http://www.epa.gov/greatlakes/sediment.html

How to evaluate spatial/temporal trends?

- Judgmental/probablility based
- Temporal trend analysis of time series
- Confounding factors in large s

- Lenght: 51 km
- Width: 1 4 km
- Catchment: 2000 km²
- Flow: $5200 \text{ m}^{3/\text{s}}$

Source: Szalinska et al. (2013) Chemosphere 93, 1771-1781

What is the major concern and what to compare with?

- Metals (Cd, Cu, Pb, Zn, and Hg)
- Organics (PCBs, PAHs)
- Sediment quality guidelines LEL/SEL, TEL/PEL,
- Consensus based values TEC/PEC
- PECs outdated, have low predictive reliability, do not reflect state-of-the-art sediment science
- Local background concentrations?!

What is the major concern and what to compare with?

Element	Upper		Middle		Lower	
(LEL, SEL)	1999	2009	1999	2009	1999	2009
Cd (0.6, 10) 1.3	0.7 (0.6–0.8)	1.4 (1.1–1.7)	0.8 (0.7–0.9)	1.5 (1.3–1.7)	1.1 (1.0–1.3)	1.4 (1.2–1.6)
Cu (16, 110) 15	16.2 (14.4–18.2) .0	19.9 (16.3–24.4)	32.1 (28.1–36.7)	33.1 (25.0–43.8)	29.8 (27.8–31.9)	26.0 (21.8–31.0)
Hg (0.2, 2) 0.2	0.04 (0.03–0.06)	0.10 (0.08–0.13)	0.05 (0.03–0.06)	0.13 (0.10–0.16)	0.15 (0.13–0.18)	0.18 (0.16- 0.21)
Pb 17 (31, 250)	.0 4.8 (3.6–6.4)	13.3 (10.4–17.0)	16.5 (12.4–22.1)	26.2 (17.5– 39.4)	15.5 (14.1–17.0)	17.1 (14.5–20.2)
zn 46 (120, 820)	.0 3.3 (2.2–5.0)	56.1 (46.2–68.1)	10.7 (6.5–17.6)	108.1 (78.5– 148.9)	40.3 (31.9–50.8)	77.8 (64.4–94.1)
PCBs (70, 5300)	5.9 (3.9–9.0)	14.8 (9.1–24.0)	16.9 (10.4–27.5)	80.6 (48.6– 133.8)	33.1 (27.5–40.0)	30.6 (23.4–39.9)
PAHs (4, 100)	0.6 (0.4–0.8)	0.8 (0.5–1.4)	3.2 (2.1– 5.0)	5.9 (4.1–8.6)	2.7 (2.3–3.2)	3.1 (2.2- 4.1)

µg/g dw; geomean; 95% confidence interval

Source: Szalinska et al. (2013) Chemosphere 93, 1771-1781; IJC (1982)

Has anything changed? NO

- PCA (principal component analysis)
- River wide mass balance
- Getis-Ord Gi* statistics

Note: About technical details on Getis-Ord PLEASE ask: Alice Grgicak-Mannion (grgicak3@uwindsor.ca)!

Has anyth	ning changed? NO	unture la		
Element/ Chemical	1999	River		
Cd	14.8 (14.7–15.1)			
Cu	366.1 (361.0–371.3)	Conner Creek - 2003 Black Lagoon – 2005 ~ 200,000 m ³		
Hg	2.84 (2.78–2.89)			
Pb	272.1 (267.8–276.5)			
Zn	1007 (989–1023)	1343 (1323–1363)		
PCBs	1.00 (0.98–1.02)	1.09 (1.6–1.11)		
PAHs	110.5 (108.3–122.7)	74.8 (73.8–75.8)		

Source: Szalinska et al. (2013) Chemosphere 93, 1771-1781

t; geomean; 95% confidence interval

Has anything changed? NO, NOT REALLY

Polygon boundaries: <u>blue – cold</u>, <u>red – hot</u>, <u>green – intermediate</u> Delineation based on p-value and z-score

Source: Szalinska et al. (2013) Chemosphere 93, 1771-1781

Is it acceptable or negligible?

• No changes

(according to the performed assessment)

- Do we care?
- "Out of control: How we failed to adapt and suffered the consequences"

Source: Kalafatis et al. (2015) J of Great Lakes Research 41 (sup.1), 20-29

Is it acceptable or negligible?

3 scenarios:

- Status quo: "The Fog"
- A dystopian future: "The Wreckage"
- A utopian future: "The Lighthouse"

Source: Kalafatis et al. (2015) J of Great Lakes Research 41 (sup.1), 20-29

Acknowledgements:

- Alice Grgicak-Mannion & Ken Drouillard (GLIER, University of Windsor, Canada)
- Environment of Canada through the Great Lakes Sustainability Fund;
- Ontario Ministry of Environment through the Canada-COA Funds

Questions???