The importance of understanding sediment dynamics to achieve a good chemical status in harbor environments.

J. Teuchies, A. Heylen, E. de Deckere, P. Meire & R. Blust

sphere

Systemic Physiological
 & Ecotoxicological Research

SEDNET – 23/09/2015 - Krakow

EU Water Framework Directive

Background :

- Achieve a good chemical status in aquatic systems.
 - All European water bodies have to comply with the water quality standards of 45 priority substances.
- Multiple contaminant sources exist.
- Water bodies can be interdependent.
- River systems and contaminant dynamics complicated.
 - **Appropriate management calls for insight in emissions, transport and behavior of contaminants.**

Port of Antwerp: specific situation

- 80 km inland
- Connection with the Scheldt estuary via locks
- Freshwater inflow (canal) limited (15 m³/s)

Port of Antwerp: specific situation

Scheldt estuary:

- Macrotidal
- Turbid
- High flow rate

Harbor docks:

- Low flow rate
- Low turbidity
- High vessel activity
- Large dredging volumes

Objective

Understanding contaminant dynamics in order to establish appropriate management to achieve water quality targets: *Mathematical risk model (EcoDocks)*.

Dissolved
Particulate
Speciation
Resuspension

Mass balance calculations: processes

Exchange with the estuary: *effect of locks*?

- Brackish water originating from the Scheldt estuary
 Large dispects against the result of the state of the second sec
- spetterminhated fingente steepit telepokesence of locks. dispersion coefficient: D = 100 m³/s.

Mass balance calculations: processes

Dredging: *land disposal (AMORAS)*

- Processing most of the sediments dredged in the docks
- On land storage of sediments after dewatering

Removal of large volumes of sediments and associated contaminants.

Mass balance calculations: *Zn* (ton per year)

Scheldt estuary

Harbor docks

Freshwater canal

Advection -17 t/y

Estuarine influx +100 to +300 t/y

Freshwater inflow +22 t/y

> Land disposal dredged sediment -350 t/y

Resuspension: *Discontinue/temporal*

contile availabing system.

Diffusive flux

6

Ecotoxicological risk: Zn

- Uptake and toxicity depends on the dissolved fraction.
- Depends on multiple environmental factors.

Acidity Organic matter Oxygen Zn²⁺ Water hardness Temperature Salinity

Speciation (Zn part. / Zn diss.) as an important factor in risk assessment.

Fate of contaminants: speciation

Scheldt estuary Harbor docks

-

Large sediment related influx from the estuary. Low impact on dissolved Zn concentrations?

EcoDocks: *dynamic risk model for the Antwerp Harbor docks*

Mass balance calculations

Speciation

Resuspension Dredging - Navigation

Bioaccumulation

Toxicity

Sedimentwater fluxes Sediment Toxicity

Develop a site specific risk model in order to Large effect of other waterbodies. Support policy decisions by the Antwerp Port Complex pollutant dynamics. Authority concerning environmental issues.

Thank you for your attention!