

Transport of suspended sediment due to propeller activity

Anita Whitlock Nybakk¹, Amy M.P. Oen², Tore Joranger³

¹NGI, PB 5686 Sluppen, Trondheim, Norway

²NGI, PB 3930 Ullevål, Oslo, Norway

³The Norwegian Defence Estates Agency, PB 405 Sentrum, Oslo, Norway Oslo Harbor, Oslo, Norway

List of contents

- The problem Determine the amount of ship induced re-suspension of sediments
- The table solution Norwegian risk assessment guideline for sediments
- The measuring solution Turbidity measurements
 - Idea
 - Execution
 - Results
- Conclusions

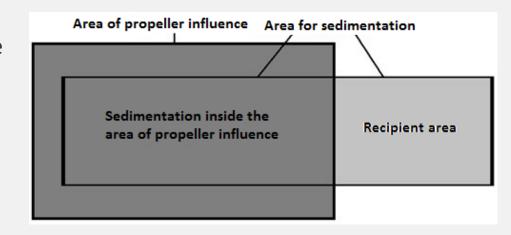
The problem

- When boats maneuver in shallow water (<20 m), the current created by their propellers may re-suspend sediments
- This is an issue if these sediments are contaminated.
- The re-suspension can contribute to transport of contaminants from a polluted area to a non-polluted area.
- How can the transport of re-suspended sediments be quantified and evaluated?

The table solution –

Norwegian risk assessment guideline for sediments

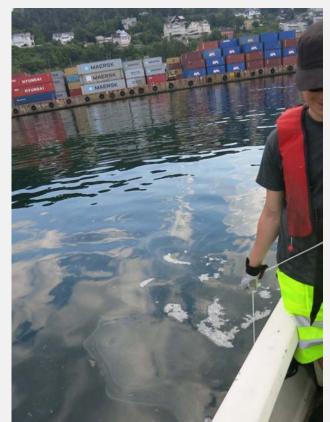
Amount of ship induced re-suspension of sediments


- Type of harbor
 - Big harbor (ferries, cruise ships, tugboats,...)
 - Industrial harbor (cargo boat, supply boats,...)
 - Small craft harbor
- Type of sediment
 - Silt and clay
 - Sand
 - Gravel and rock
- Amount re-suspended sediment
 - 1 to 2000 kg per ship maneuver
 - Industrial harbors with silt and clay sediments → 1000 kg per ship maneuver

The measuring solution – Turbidity measurements The Idea

- In the area of propeller influence, sediments are re-suspended to the water column in a "cloud" or plume
- The plume is influenced by the direction and speed of the current
- Some sediment will deposit in the area of propeller influences and some sediments will be transported out of this area
- The objective is to calculate the amount of sediments transported out of the area of propeller influence

The measuring solution – Turbidity measurements Execution


- Measured turbidity when the sediment was re-suspended
 - The turbidity level
 - The volume of the plume
 - The movement of the plume
- Measured using a CTD with a built-in turbidity meter
- Measured the current direction and velocity in the area

The measuring solution – Turbidity measurements Execution

- Measured turbidity in the whole water column at pre-determined locations
 - Stations to define the volume of the plume were measured once, immediately after re-suspension
 - Stations to determine the movement of the plume were measured multiple times

The measuring solution – Turbidity measurements Execution

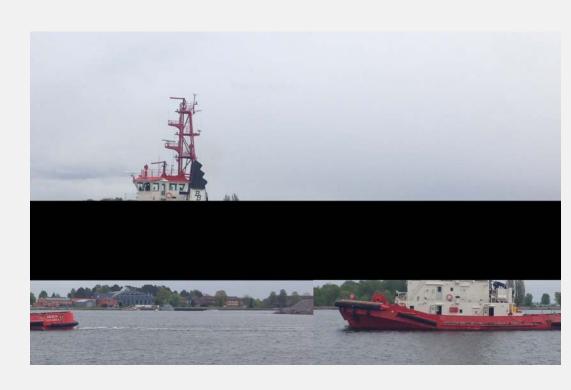
NGI has used this method at two different harbors in Norway

Horten Inner harbor

- Semi-enclosed harbor
- Fine sediments
- Shallow, most of the harbor <20 m deep
- Industrial harbor

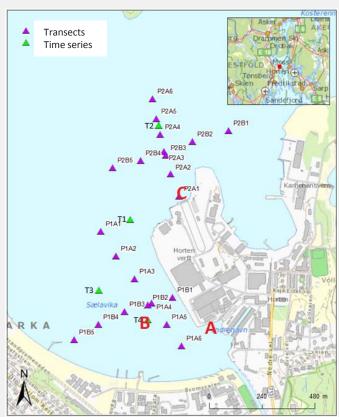
Oslo harbor

- A limited part of the harbor
- Some fine sediments have been registered
- Up to 40-50 m deep
- Industrial harbor



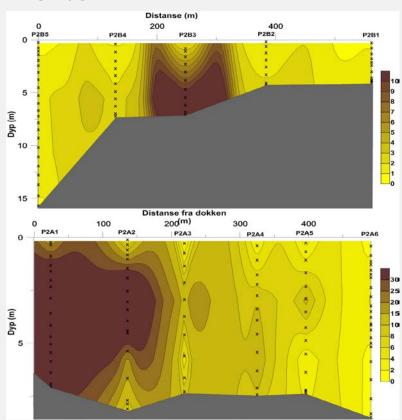
The measuring solution – Turbidity measurements

Horten


- Tugboat simulated resuspension from a larger ship
- Maneuvered in the locations were boats usually maneuver
- Current direction and velocity was measured at one location

The measuring solution – Turbidity measurements Results Horten

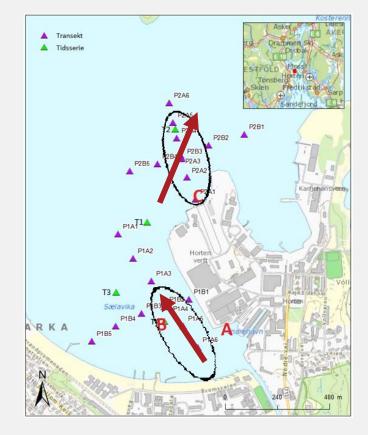
- Turbidity was measured in two areas
 - 4 transects to define the initial plume volume
 - 4 locations with repeated measurements, to determine the movement of the plume
 - 1 location for measuring water current at 9 different depths



The measuring solution – Turbidity measurements Results Horten

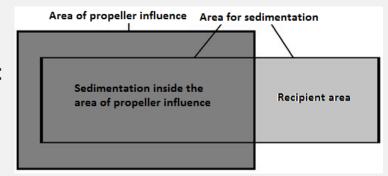
Transects

- Re-suspension in location C,
 when the tugboat simulated
 departures from the dock
- There is a very clear turbidity plume, both in vertical and horizontal direction
- These measurements define the volume of the plume



The measuring solution – Turbidity measurements Results Horten

Turbidity plumes

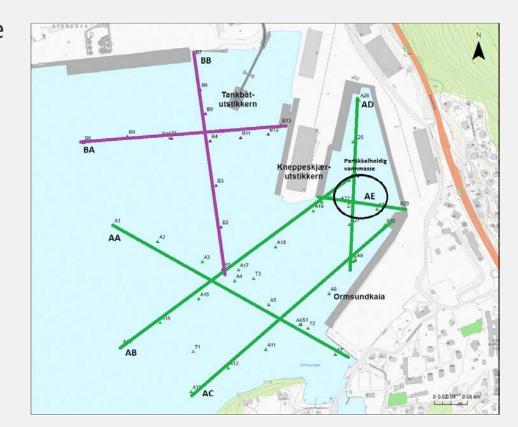

- There are registered one turbidity plume in each area
- The volume, turbidity level and the velocity of the plumes were used to calculate the transport of sediments out of the areas

The measuring solution – Turbidity measurements Calculations Horten

- Original plume
 - 500 meter long, 200 meter wide and 5 meter thick
 - Life time: 1,5 hour
 - Average speed: 6 cm/s
- Plume transported out of the original area:
 - Plume moved 324 meters
 - 100 meter wide and 3 meter thick
 - Volume: 97 200 m³
 - Average turbidity level: 7 NTU
- Assuming 1 NTU is equal to 1 mg sediment per liter, this give a transport of 680 kg sediment per ship maneuver in this specific area
- There has been made some assumptions during the calculations. These can be sources of inaccuracy.

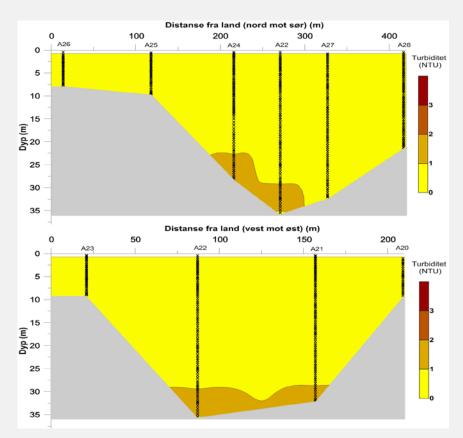
The measuring solution – Turbidity measurements

Oslo


- Heavy trafficked harbor
- NGI measured after the cargo boats had arrived or departed at Sjursøya south quays
- Current direction and velocity was measured at three different locations

The measuring solution – Turbidity measurements Results Oslo

- Turbidity measured in three areas
 - 7 transects
 - 5 locations with repeated measurements
 - 3 locations for measuring water current direction and velocity



The measuring solution – Turbidity measurements

Results Oslo

Transects

- Transects to define the initial volume of the plume
- No clear plume
- Some elevated level of turbidity in a limited area, at ~ 30 meters depth

The measuring solution – Turbidity measurements Results Oslo

Repeated measurements 09.07.2014 11.07.2014 16.07.2014 10:54 13:26 13:56 13:29 12:05 12:37 13:20 13:37 Background measurements Turbiditet (NTU) were made 10 Red line is boat activity Blue line is jump in time Some turbidity registered, but lower level and at a 30 deeper location than 35 expected Tankbåtutstikkeren Tankbåtutstikkeren Tankbåtutstikkeren Kneppeskjærutstikkeren

The table solution versus the measuring solution

- The risk assessment assumes a transport of 1000 kg sediment out of the area per ship maneuver.
- Calculations for Horten based on in-situ measurements:
 - Area B: 460 kg sediment transported per ship maneuver
 - Area C: 680 kg sediment transported per ship maneuver
- In the three areas in Oslo harbor there are no registered transport of re-suspended sediments related to the boat traffic in the areas we investigated.

Conclusions

- Risk assessment guidelines are conservative
- Local in-situ measurements provide a more accurate quantification and evaluation of the amount of transported re-suspended sediments
- For Horten it means the accuracy of the areas influences by ship induced re-suspension are better defined, which is used in capping design for the area
- For Oslo it provide documentation that there is very little re-suspension of contaminated sediments in the areas, and this has been reported to the environmental authorities

@infoNGI