

University of Agriculture in Krakow, Poland

¹Department of Agricultural and Environmental Chemistry, ²Department of Hydraulic Engineering and Geotechnics, *e – mail: Agnieszka.Baran@ur.krakow.pl*

<u>Tomasz Koniarz</u>², Agnieszka Baran¹, Marek Tarnawski², Czesława Jasiewcz¹

The utilization of bottom sediments to improve soil fertility

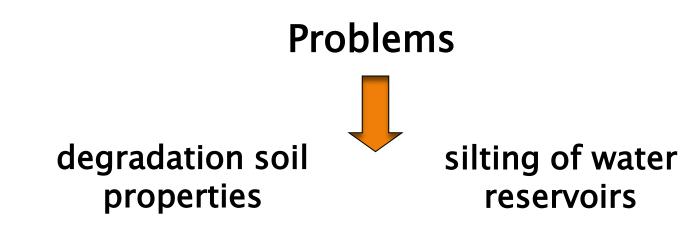
KRAKOW 2015

Contents of presentation

►Introduction

>Location/Characteristic of the reservoir

≻Silting


≻Aim of study

≻Material and Methods

➢Results

➤Conclusions

Introduction

The sediment does not pose a hazard for the environment, the environmentally justified method of such sediment management is their use as structure and soil forming material on soilless grounds and wastelands.

Location

	ZESZÓW Malawa	the Rzeszów reservoir
Wrocław Katowich William William	information	value
Rybrik Krakdur Men Franzow	Storage capacity	1.80 / 0.66 mln m ³
	(total / usable)	
Fig. 1. Localization of the Rzeszów	Year of completion	1973
	Reservoir length	6.74 km
	Water table area	68.2 ha
	Mean depth	2.64 m
	River	the Wislok , the Strug

Silting

Tab. 2. Capacity of Rzeszów reservoir over the years

Storage level		1974	1986	1994
Normal Storage Le 199,50 m n.p.m.	evel	1,79 mln m ³	1,2 mln m ³	1,36 mln m ³
Min Sorage Le 198,50 m n.p.m.	evel	1,14 mln m ³	no data	0,60 mln m ³

Aim of study

The aim of the study was to assess the effect of bottom sediments on the selected properties of the light soil and the chemical composition of the plants test.

Material and methods

Tab. 3. Characteristics of selected sediments and soil properties

Materials	Granulometric		C	1	N P ₂	2 ⁰ 5	K ₂ O
	compositio	n KC	l g	g • kg ⁻¹		mg •	kg⁻¹
Sediment	clay	7.1 ±0.2		-		44 25	212 ±12
Soil	loamy sar	nd 5.0) 16	5 1	.2 70	0.4	112
Tab. 4. Co	oncentration	of heavy r	netals in	bottom s	ediment a	and so	oil
Materials	Zn	Cu	Ni	Cr	Pb		Cd
Materials		mg ∙ kg⁻¹					

Sediment	107 ± 18	$21 \ \pm 4$	33 ± 6	$35\ \pm 5$	$19\ \pm 2$	$\textbf{4.5} \pm 0.3$
Soil	50	31	13	15	10	0.44

Tab. 5. Concentration of elements in bottom sediment

Bottom	K	Ca	Mg	Na	Р	Fe	
sediment		g • kg ⁻¹ s.m.					
Mean	3.8 ±0.7	19.5 ±3	5.4 ±0.6	0.74 ± 0.03	$\textbf{0.86} \pm 0.1$	18.5 ±2	

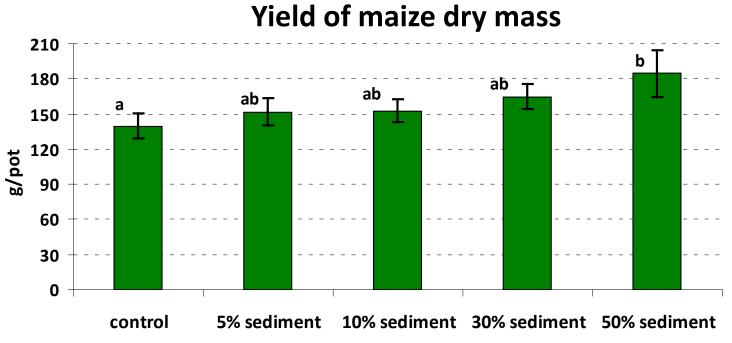
Material and methods

Tab. 6. Pot experiment scheme

Soil	sediement
% sh	nare
100	0
95	5
90	10
70	30
50	50

Vegetation period – 86 days

Tab. 7. Analysis after harvesting the plants


8 kg

4 x

The obtained results were verified statistically using the one-way ANOVA at significance level α =0.05, by means of Statistica 10 programme.

Plants
Yield
Macroelements,
Zn, Cu, Ni, Pb, Cd

Results

Treatment	Shoots	Roots			
Πεαιπεπι	g ● pot ⁻¹				
Control	118.5 a	21.0 a			
5% sediement	128.0 ab	23.7 a			
10% sediement	125.5 ab	27.0 a			
30% sediement	133.5 b	31.2 ab			
50% sediement	144.8 c	39.8 b			
*homogenous groups ass	το Tukey test, α < 0,05, n.i. – sta	atistically insignificant			

Results

Tab. 8 and 9. Content of macroelements and trace elements in maize (shoots)

Treatment	K	Р	Ca	Mg	N
Heatment			g • kg⁻¹		_
Control	17.4 b	1.9 b	2.5 a	1.5 a	10.7 ab
5% sediement	16.8 ab	1.6 ab	2.8 a	1.9 ab	11.5 b
10% sediement	16.9 ab	1.4 a	3.6 b	2.1 b	11.9 b
30% sediement	14.6 a	1.3 a	3.8 b	2.6 c	4.4 a
50% sediement	15.0 a	1.1 a	3.8 b	3.0 d	4.7 a
Treatment	Zn	Cu	Ni	Pb	Cd
rreatment			mg • kg⁻¹		
Control	48.6c	1.67a	0.96	0.52b	0.31c
5% sediement	36.8b 🔻	1.87a	0.89	0.56b 🗸	0.13b 🗸
10% sediement	32.3ab	1.91a 🔺	0.95	0.53b	0.09ab
30% sediement	29.9ab	2.91b	0.75	0.29a	0.08ab
50% sediement	25.8a	3.01b	1.02	0.33a	0.07a

*homogenous groups. I gling to Tukey test, $\alpha < 0,05$, n.i. – statistically insignificant

Results

Tab. 10 and 11. Soil properties after pot experiment

Treatment	pH KCl	H mmol (+)/kg	C org. g/kg	N g/kg
Control	4,72 a	22.5 b	8.88	0.72
5% sediement	6.42 b	11.2 ab	9.29	0.83
10% sediement	7.02 c 🔺	10.3 ab	10.86	0.92
30% sediement	7,18 cd	6.5 a	14.12	1.08
50% sediement	7,31 d	6.7 a	10.89	0.93
	7			

Treatment	Zn	Cu	Ni	Pb	Cd	
rreatment	mg • kg ⁻¹ (1 mol HCl • dm ⁻¹)					
Control	13.9 a	1.42 a	0.89 a	14.3 b	1.33 b	
5% sediement	14.7 ab	1.32 a	1.29 ab	13.1 ab	0.62 a	
10% sediement	16.6 b	1.75 a	1.18 ab	12.9 ab	0.55 a	
30% sediement	19.8 c	3.78 b	2.30 bc	12.3 a	0.50 a	
50% sediement	24.5 d	6.58 c	3.62 c	12.2 a	0.48 a	

*homogenous groups according to Tukey test, $\alpha < 0,05$, n.i. – statistically insignificant

Conclusions

- 1. Bottom sediment added to light soil had a positive effect on maize biomass yield.
- 2. Plant biomass did not meet the criteria for fodder with respect to quality because of too small contents of macroelements. While using bottom sediment for plant cultivation one should apply supplementary mineral fertilization because of the sediment low concentrations of phosphorus and potassium.
- 3. The experiment demonstrated that the applied bottom deposit supplement positively affected improvement of the analyzed soil (pH, content of C org. and N) and decreased available content of elements toxic for plants, i.e. lead and cadmium.
- 4. An applied bottom deposit revealed in its composition a considerable share of clay fractions, alkaline reaction and low total heavy metal content, therefore it may be applied as an admixture to light soils to improve their productivity.

University of Agriculture in Krakow, Poland

¹Department of Agricultural and Environmental Chemistry, ²Department of Hydraulic Engineering and Geotechnics,

<u>Tomasz Koniarz</u>², Agnieszka Baran¹, Marek Tarnawski², Czesława Jasiewcz¹

e – mail: Agnieszka.Baran@ur.krakow.pl

The utilization of bottom sediments to improve soil fertility

KRAKOW 2015