10° SedNet Conference 2017, Genoa Sediments on the move

### A PROTOCOL FOR ASSESSING SEDIMENT TOXICITY IN RESERVOIRS BEFORE FLUSHING

#### Laura Marziali<sup>1</sup>, Licia Guzzella<sup>1</sup>, Gianni Tartari<sup>1</sup>, Pietro Genoni<sup>2</sup>, Erika Lorenzi<sup>2</sup>, Clara Bravi<sup>3</sup>

<sup>1</sup> CNR IRSA, Water Research Institute, Via del Mulino, 19, I-20861 Brugherio, Italy

- <sup>2</sup> Lombardy Regional Environmental Protection Agency, Via Rosellini 17, I-20124 Milan, Italy
- <sup>3</sup> Lombardy Region, Piazza Città di Lombardia 1, I-20124 Milan, Italy



## (Italy)

Lombardy Region:

Large dams: about 80

- Small dams: about 600

Reservoirs accumulate huge quantities of fine sediments: sediment management is needed to maintain/recover storage capacity and to prevent clogging of outlets Sediment flushing: scouring out of deposited sediments through the use of low-level outlets in dams to lower water levels, thereby increasing the flow velocities in the reservoir

Implications on aquatic communities in the riverine ecosystem downstream the dam:

- physical-mechanical impact: immediate
- ecotoxicological effects on aquatic organisms due to the release of toxic substances from sediments: long-term effects

Water Framework Directive

### Sediments: a complex matrix ... with scarse regulation

Complex matrix:

- toxicity depends on site-specific bioavailability, partitioning and chemical speciation
- flushing and sluicing techniques were proved to alter physical and chemical conditions (e.g. solid/liquid ratio, pH, redox conditions), thus determining the release of contaminants from sediments (e.g. Hug Peter et al., 2014; Fetters et al., 2016, Frémion et al., 2016)
  Regulation?
- WFD 2000/60/EC
- Directive 2013/39/UE

Sediment Quality Standards are not defined for freshwater sediments



Fetters K.J., Costello D.M., Hammerschmidt C.R., Burton G.A.Jr., 2016. Toxicological effects of short-term resuspension of metalcontaminated freshwater and marine sediments. Environmental Toxicology and Chemistry, 35: 676-686.

Frémion F., Bordas F., Mourier B., Lenain J-f., Kestens T., Courtin-Nomade A., 2016. Influence of dams on sediment continuity: a study case of a natural metallic contamination. Science of the Total Environment, 547: 282-294.

Frémion F., Courtin-nomade A., Bordas F., Lenain J-f., Jugé P., Kestens T., Mourier B., 2016. Impact of sediments resuspension on metal solubilization and water quality during recurrent reservoir sluicing management. Science of the Total Environment, 562: 201-215.
 Hug Peter D., Castella E., Slaveykova V.I., 2014. Effects of a reservoir flushing on trace metal partitioning, speciation and benthic invertebrates in the floodplain. Environmental Science Processes & Impacts, 16: 2692-2702.

### PrATo: a protocol for assessing sediment toxicity in reservoirs before flushing

- PrATo includes methods for sampling, chemical analysis and ecotoxicological evaluation of sediments, as well as criteria for risk assessment, based on cross-interpretation of results
- Sediment characterization need to be carried out:
  - **before flushing**: sediments of the reservoir and of the downstream river will be analyzed in order to plan adequate flushing operations
  - after flushing: analyses will be compared with results obtained before flushing, in order to evaluate the outcomes of the operations
- It provides a practical tool for drafting Reservoirs Management Plans

Final aim: maximizing sediment discharge minimizing environmental impacts on the downstream river



### Reservoirs in Lombardy Regions reservoirs were considered

High altitude, anthropic pressures not significant, low siltation, flushing operation not needed, possibly high concentrations of metals deriving from natural weathering or atmospheric deposition

| Siltation<br>Pressure rate/level<br>analysis | Low | Significant | Relevant |
|----------------------------------------------|-----|-------------|----------|
| Not significant                              | 36  | 7           | 3        |
| Significant                                  | 2   | 6           | 0        |
| Relevant                                     | 2   | 7           | 6        |

Low altitude, anthropogenic pressures relevant, high siltation, flushing operation needed, possibly high concentrations of metals and organics deriving from anthropogenic activities

### **Chemical analysis of sediments**

IRSA CNR

Analysis of fine fractions (< 2 mm) and leachates

The list of parameters varies according to pressure analysis

| Analytes                   | Anthropic<br>pressures<br>not<br>significant | Anthropic<br>pressures<br>significant or<br>relevant | Analytes                   | Anthropic<br>pressures<br>not<br>significant | Anthropic<br>pressures<br>significant or<br>relevant |
|----------------------------|----------------------------------------------|------------------------------------------------------|----------------------------|----------------------------------------------|------------------------------------------------------|
| Sediment characteristics   |                                              |                                                      | Organics                   |                                              |                                                      |
| Particle size distribution | Х                                            | Х                                                    | Anthracene                 |                                              | х                                                    |
| Humidity                   | х                                            | Х                                                    | Fluorene                   |                                              | х                                                    |
| TOC                        | Х                                            | Х                                                    | Naphthalene                |                                              | х                                                    |
|                            |                                              |                                                      | Phenanthrene               |                                              | х                                                    |
|                            |                                              |                                                      | Benzo(a)anthracene         |                                              | х                                                    |
| Trace elements             |                                              |                                                      | Benzo(a)pyrene             |                                              | х                                                    |
| Arsenic                    | Х                                            | Х                                                    | Chrysene                   |                                              | х                                                    |
| Cadmium                    | х                                            | Х                                                    | Dibenzo(a,h)anthracen<br>e |                                              | x                                                    |
| Total chromium             | х                                            | Х                                                    | Fluoranthene               |                                              | х                                                    |
| Chromium VI                |                                              | Х                                                    | Pyrene                     |                                              | х                                                    |
| Manganese                  |                                              | Х                                                    | Total PAHs                 | Х                                            | х                                                    |
| Antimony                   |                                              | Х                                                    | Total PCBs                 | Х                                            | х                                                    |
| Copper                     | х                                            | Х                                                    | Chlordane                  |                                              | х                                                    |
| Lead                       | х                                            | Х                                                    | Dieldrin                   |                                              | х                                                    |
| Mercury                    |                                              | Х                                                    | p,p'-DDD                   |                                              | х                                                    |
| Nickel                     | Х                                            | Х                                                    | p,p'-DDE                   |                                              | х                                                    |
| Zinc                       | Х                                            | Х                                                    | p,p-DDT                    |                                              | х                                                    |
| Beryllium                  |                                              | Х                                                    | Total DDTs                 |                                              | х                                                    |
| Cobalt                     |                                              | Х                                                    | Endrin                     |                                              | х                                                    |
| Selenium                   |                                              | Х                                                    | Heptachlor epoxide         |                                              | х                                                    |
| Tin                        |                                              | x                                                    | Lindane (gamma-<br>BHC)    |                                              | x                                                    |
| Vanadium                   |                                              | Y                                                    | C > 12                     | Y                                            | Y                                                    |

### **Benchmarks for sediments**

#### Sediments: Threshold Effect Concentrations (TECs) and Probable Effect

#### Concentrations (PECs) (MacDonald et al., 2000)

| Pollutant                   | TEC          | PEC                            | Pollutant                                | TEC          | PEC  |  |  |  |
|-----------------------------|--------------|--------------------------------|------------------------------------------|--------------|------|--|--|--|
| Trace elements (mg/kg p.s.) |              |                                |                                          |              |      |  |  |  |
| Arsenic                     | 9.79         | <b>33</b> Lead 35.8 <b>128</b> |                                          |              |      |  |  |  |
| Cadmium                     | 0.99         | 4.98                           | Mercury                                  | 0.18         | 1.06 |  |  |  |
| Chromium                    | 43.4         | 111                            | Nickel                                   | 22.7         | 48.6 |  |  |  |
| Copper                      | 31.6         | 149                            | Zinc                                     | 121          | 459  |  |  |  |
|                             |              |                                |                                          |              |      |  |  |  |
| Polycyclic aromatic hydroc  | arbons (µg/l | kg p.s.)                       | Polycyclic biphenyls                     | (µg/kg p.s.) |      |  |  |  |
| Anthracene                  | 57.2         | 845                            | Total PCBs                               | 59.8         | 676  |  |  |  |
| Fluorene                    | 77.4         | 536                            | 6 Organochlorine pesticides (μg/kg p.s.) |              |      |  |  |  |
| Naphthalene                 | 176          | 561                            | Chlordane                                | 3.24         | 17.6 |  |  |  |
| Phenanthrene                | 204          | 1170                           | Dieldrin                                 | 1.9          | 61.8 |  |  |  |
| Benzo(a)anthracene          | 108          | 1050                           | p,p'-DDD                                 | 4.88         | 28   |  |  |  |
| Benzo(a)pyrene              | 150          | 1450                           | p,p'-DDE                                 | 3.16         | 31.3 |  |  |  |
| Chrysene                    | 166          | 1290                           | p,p-DDT                                  | 4.16         | 62.9 |  |  |  |
| Dibenzo(a,h)anthracene      | 33           |                                | Total DDTs                               | 5.28         | 572  |  |  |  |
| Fluoranthene                | 423          | 2230                           | Endrin                                   | 2.22         | 207  |  |  |  |
| Pyrene                      | 195          | 1520                           | Heptachlor epoxide                       | 2.47         | 16   |  |  |  |
| Total PAHs                  | 1610         | 22800                          | Lindane (gamma-BHC)                      | 2.37         | 4.99 |  |  |  |

MacDonald D.D., Ingersoll C.G. & Berger T.A. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol., 39: 20–31.

Leachates: concentrations from existing national legislation (e.g. D.M. 05/04/2006, D.M. 27/09/2010 and D. Lgs 152/2006, allegato 5, parte IV, tabella 2)

### **Ecotoxicological analysis**

Whole-sediment chronic test with the ostracod Heterocypris incongruens as screening test (all samples)



IRSA CNR

• Test batteries with chronic tests focused on sediments or leachates according to benchmark exceedance (selected

| sample)      |                                          | Anthropic pressure analysis |                                                                    |                                                                    |                                                                    |  |
|--------------|------------------------------------------|-----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--|
|              |                                          |                             | Not significant                                                    | Significant                                                        | Relevant                                                           |  |
|              | and/or<br>exceedance<br>of<br>benchmarks | for whole-<br>sediments     | 1) Test on leachates with<br><b>Ceriodaphnia</b> or <b>Daphnia</b> | 1) Test on leachates with<br><b>Ceriodaphnia</b> or <b>Daphnia</b> | 1) Test on leachates with<br><b>Ceriodaphnia</b> or <b>Daphnia</b> |  |
|              |                                          |                             |                                                                    | 2) Whole-sediment test<br>with <b>higher plants</b>                | 2) Whole-sediment test with <b>higher plants</b>                   |  |
| Toxicity for |                                          |                             |                                                                    |                                                                    | 3) Whole-sediment test<br>with <i>Chironomus</i>                   |  |
| incongruens  |                                          |                             | 1) Test on leachates with<br><b>Ceriodaphnia</b> or <b>Daphnia</b> | 1) Test on leachates with<br><i>Ceriodaphnia</i> or <i>Daphnia</i> | 1) Test on leachates with<br><i>Ceriodaphnia</i> or <i>Daphnia</i> |  |
|              |                                          |                             |                                                                    | 2) Test on leachates with<br><i>Raphidocelis subcapitata</i>       | 2) Test on leachates with <i>Raphidocelis subcapitata</i>          |  |
|              |                                          |                             |                                                                    |                                                                    | 3) Test on leachates with <b>higher plants</b>                     |  |



- Tests on leachates: NOEC and LOEC can be calculated in order to define a proper sediment:water dilution factor to be applied during flushing which should minimize long-term toxic effects on aquatic organisms in the downstream river ecosystem
- Test on sediments (% effects): in case of significant sediment toxicity, some additional measures will be needed during and after flushing in order to prevent massive sediment deposition in the downstream river, e.g. additional washing operations after flushing, limitation of flushing operations in terms of sediment volumes flushed downstream at each event or frequency of flushing operations

### **Results from case studies**

- Most reservoirs showed exceedance of benchmarks for trace elements in sediments
- No exceedance for organics

| Doromotor          | Lloit                           | Min    | Мох    | Media | TEC/PE |
|--------------------|---------------------------------|--------|--------|-------|--------|
| Falameter          | Unit                            | IVIIII | IVIAX  | n     | С      |
| Altitude           | m a.s.l.                        | 237    | 2987   | 1051  |        |
| Siltation<br>rate  | cm/year                         | 0.1    | 74.1   | 5.6   |        |
| Siltation<br>level | % volume                        | 0.001  | 8.6    | 0.4   |        |
| Volume             | m³x10 <sup>6</sup>              | 0.05   | 63     | 0.35  |        |
| Surface            | m <sup>2</sup> x10 <sup>6</sup> | 0.02   | 2.18   | 0.04  |        |
| Depth              | m                               | 9      | 86     | 27    |        |
| Fine<br>fraction   | % < 2mm                         | 15     | 100    | 91    |        |
| ТОС                | mg/kg d.w.                      | 58     | 107753 | 13036 |        |
| As                 | mg/kg d.w.                      | 1.0    | 694.7  | 27.9  | 33     |
| Cd                 | mg/kg d.w.                      | 0.03   | 2.00   | 0.22  | 4.98   |
| Cr                 | mg/kg d.w.                      | 6.8    | 65.3   | 21.6  | 111    |
| Hg                 | mg/kg d.w.                      | 0.01   | 1.20   | 0.04  | 1.06   |
| Ni                 | mg/kg d.w.                      | 2.7    | 46.4   | 19.3  | 48.6   |
| Pb                 | mg/kg d.w.                      | 1.0    | 150    | 18.1  | 128    |
| Cu                 | mg/kg d.w.                      | 1.4    | 91.5   | 25.5  | 149    |
| Zn                 | ma/ka d w                       | 28.3   | 356    | 88.2  | 150    |



### **Results from case studies**

IRSA CNR

Chronic test batteries were tested only for 5 reservoirs (2015-16)
 In general, leachates did not exert toxic effects, while frequent toxicity was found in whole-sediment tests

#### Example ...



|   |                                                         | Example                                     |                 |                   |                     |                    |                        |     | IRSA |
|---|---------------------------------------------------------|---------------------------------------------|-----------------|-------------------|---------------------|--------------------|------------------------|-----|------|
|   | Sediment<br>core<br>layerBenchmark<br>exceedance<br>for |                                             | Benchmar<br>k   | Test on leachates |                     |                    | Whole-sediment<br>test |     | NR   |
|   |                                                         |                                             | exceedanc       | Da                | phnia mag           | H. incongruens     |                        | 1   |      |
| 1 | reachates                                               | sediments                                   | Mortalit<br>y % | Hatchin<br>g %    | Growth<br>%         | Mortalit<br>y<br>% | Growth<br>%            |     |      |
|   | S1C1<br>0-30 cm                                         | Hg <mark>3 µg/L</mark> ,<br>COD             | As              | 0                 | -9                  | -3                 | 22                     | -2  |      |
|   | S1C2<br>30 cm-2<br>m                                    | COD                                         | As              | 0                 | -15                 | -8                 | 27                     | -10 |      |
| ţ | S1C3<br>2 m-5 m                                         | As <mark>66 μg/L</mark> ,<br>COD 54<br>mg/l | As<br>312 mg/kg | 0                 | -10                 | -5                 | 12                     | -18 |      |
|   | S1C4<br>5 m-7 m                                         | COD                                         | Ve<br>S1C1      | rtical variat     | pility of pol       | Iutants<br>mea     | 18                     | -28 |      |
|   |                                                         | t core la                                   | S2C2            |                   |                     |                    |                        | 0   |      |
|   |                                                         | ediment                                     | S1C3            |                   |                     |                    |                        |     |      |
|   |                                                         | ÿ                                           | (bottom) 00     | 01<br>Incre       | 01<br>mental factor | 02                 | 0                      |     |      |
|   |                                                         |                                             |                 |                   |                     |                    | 0                      |     |      |

depth

D

# Evaluation of flushing operations for a better management

IRSA CNR

Chemistry

Toxicology Ecology

#### **TRIAD** approach

Flushing operations need remodulation/improvement if.

- Chemical analysis: contaminant concentrations in the downstream river show significant increase after flushing (es. 50% increase, or new exceedance of benchmarks)
- Ecotoxicological analysis: toxicity in the downstream river shows significant increase (es. significant increase of % effect, or new positive tests)
- Ecological analysis: ecological status in the downstream river shows a significant decrease after flushing

### Conclusion

IRSA CNR

**PrATo** is a practical and efficient tool for a sustainable management of the flushing activities

**PrATo** will be adopted in Lombardy Region as part of technical guidelines for drafting Reservoir Management Plans: **Direttive tecniche per la predisposizione**, l'approvazione e l'attuazione dei Progetti di Gestione degli invasi (DGR 5736/2016 Regione Lombardia)

