Between floodplain soil and river bed

Patrick Jacobs, Tauw, Berlin, Germany **Ronald Koomans**, MEDUSA, Groningen, The Netherlands

linking results from innovative non-invasive PCDD/F mapping to particle bound mass flux data

SedNet Conference 2017 14-17 June, Genoa, Italy

Spittelwasser creek and its history

- Receiving water course of the <u>Bitterfeld-Wolfen</u> industrial complex.
- One of the world's oldest complex chemical production sites.
- Dioxins released from *Mg* production from early 1930ies to 1945.

Spittelwasser creek

Spittelwasser creek

Spittelwasser creek its floodplain in the Elbe River Basin

PCDD/F loads in river sections

PCDD/F loads in river sections

Monitoring results:

- High background load of Mulde river!
- Low input from industrial site
- Very low input from upstream tributaries to the Spittelwasser creek

Conclusion:

• Dominant input from sediment and/or floodplain soils!

Methods: gammaspectrometric investigation of floodplain soils

Contaminant concentrations from gamma-ray measurements in floodplain soils

Working hypothesis for the Spittelwasser floodplain

- pollutants bound to (fine) sediment particles and deposited during flood events.
- Radionuclides directly related to the soil matrix composition (Th, U and K) and/or adsorbed onto the fine or organic sediments (U and Cs)
- The sediment-genetic background is the same throughout the entire survey area.
- → If correlation between (A) target parameter for this area and (B) concentration of radionuclides, then proxy for efficiently mapping the dispersal of the pollutants.

Soil samples measured for

- Target parameters
 - Grain size properties, TOC
 - Dioxins, pesticides, organo tin compounds
- Concentrations of radionuclides

Data analysis

- Significant correlations between dioxins, pesticides, and tributyltin vs. radionuclides
- In this area, radionuclides can be used as a proxy for contaminant dispersal!

Project set-up of pilot

- Pilot study in small area (400 m x 300 m)
 - to asses practical feasibility
 - to determine spatial variation to calculate survey scheme
- Calibration (sample analysis on 14 samples) to asses feasibility
- Validation by up to 11 retained samples
- After successful pilot: 130 ha full-scale investigation
- (Additional investigation of depth profiles and possible impacts of *wofatite* deposits)

Pilot – raw data: countrate, unspecific

Pilot – processed data: ²³⁸U activity

Contaminant mapping and validation

Full scale mapping, PCDD/F

Full scale mapping, results

- Total survey
 area ca. 130 ha
- 5 survey zones
- 47 soil samples

						(0)	~
	Area	Sn org.	HCH	DDX	PCDD/F	Zanai	We have
	[ha]	[kg]	[t]	[t]	[kg TEQ]	Zane 5	TEAC
Zone 1	24.3	2.2	0.9	0.1	0.05		V STAR
Zone 2	32.9	7.3	9.9	0.5	0.28	and Colles 2	A CONTRACTOR
Zone 3	27.2	4	5.2	0.3	0.15		Jessnitz
Zone 4	35.3	4.7	1.9	0.1	0.12		
Zone 5	14.1	0.008	0.2	0	0.002		
Gesamt	133.8	18.2	18.2	0.9	0.61	Zone: 1	
				Designed and the second	and the second second	the second se	and the second states

Raguhn

Zone: 3

Contaminant inventory calculated

ΣS

PC

Tauw

- Surface water monitoring revealed load increasing along Spittelwasser course.
- Release from bed sediment cannot explain contaminant load.
- Input from floodplains dominates
- Contaminant mass discharged negligible compared to inventory of flood plains!

	mass in floodplain soil	mass load surface water	mass depletion per year
	[kg]	[kg/a]	
ICH	18.2	7.06	0.04%
DX	900	0.63	0.07%
n-Org.	18.2	3.68	20.22%
DD/F, WHO-TEQ	0.61	0.000668	0.11%

Summary and Conclusions

- The technique is appropriate for pesticides and dioxin mapping under given conditions!
- Hotspots could be detected at high resolution.
- The inventory of contaminants is orders of magnitudes larger than the annual load of the Spittelwasser creek.
- Secondary sources in the floodplain will not be depleted within reasonable time frames.

