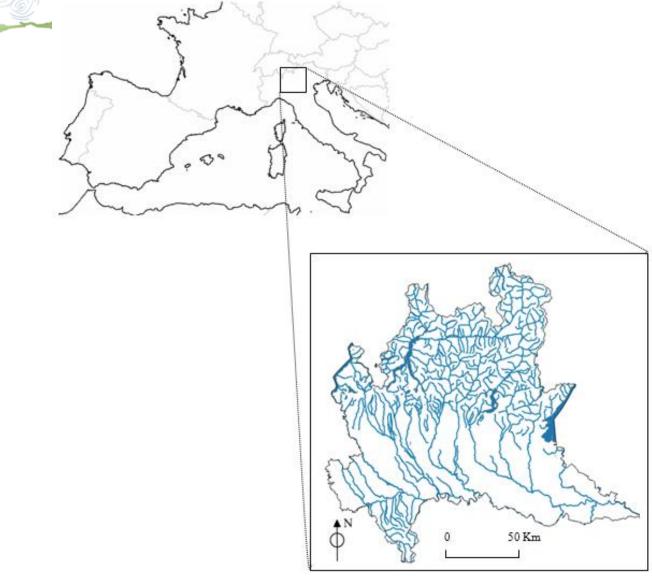
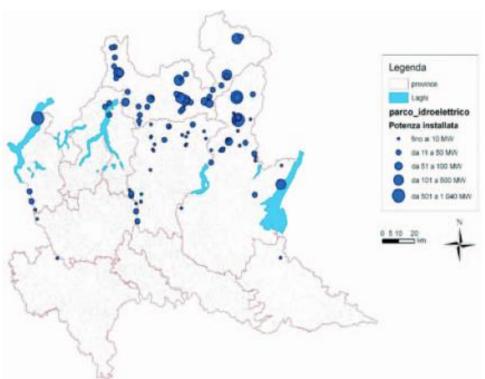


Biotic impact of different sediment flushing practices in Italian alpine rivers



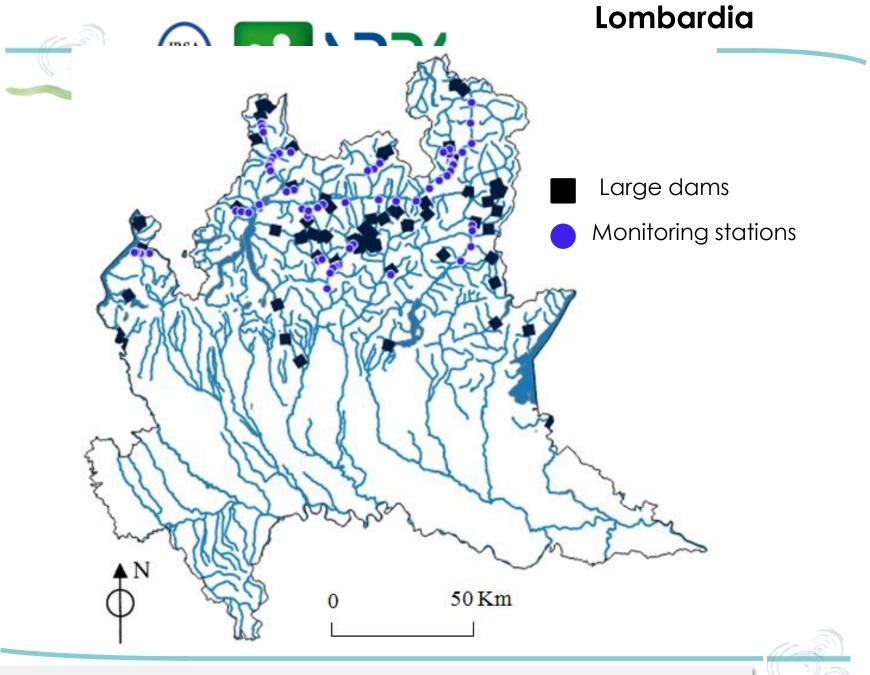
Daniele Demartini, Andrea Buffagni, David G Armanini, Almudena Idígoras, Laura Terranova, Pietro Genoni, Erika Lorenzi, Cristina Borlandelli & Clara Bravi

Lombardia



Study area

Lombardia



Fonte: Regione Lombardia, 2008

- More than 10 milions people living in Lombardia
- 41 % of the region is mountainous territory
- More than 400 hydropower stations
- ≈ 70 are licences for water diversion for hydropower production (Power > 3000 kW)
- Many of these are represented by large dams that need flushing operations to remove sediments

Study area

Data collected from \approx 30 flushing operations during last 10 years (2006-2015). Different types of operations in terms of duration and concentration of suspended solids.

- Fish data: ≈ 150 samples
- Macroinvertebrates data: ≈430 samples
- Suspended Solids Concentrations were measured during flushing operations: Data collected at least hourly

Data available

To evalutate impact of flushing operations \rightarrow Calculation of SEV model (Severity of ill effects) on sites interested by flushing events.

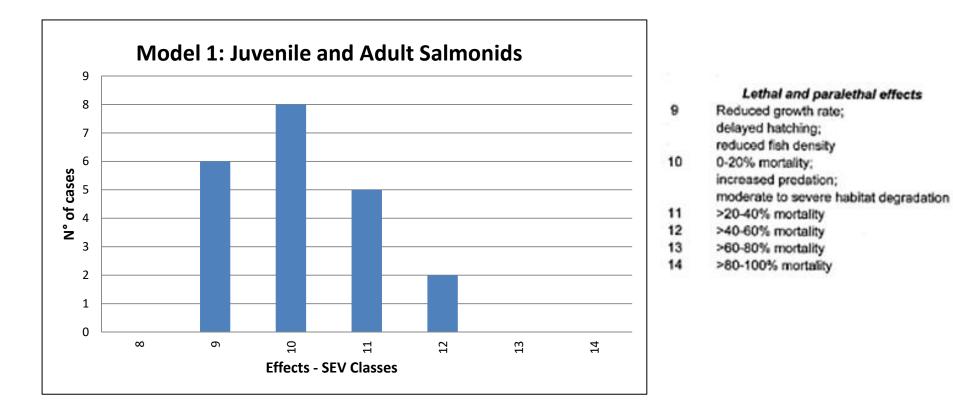
SEV (Newcombe & Jensen 1996) → predictor of potential impact of sediments

$SEV = a + b(log_ex) + c(log_ey)$

a, b,c:regressions coefficients

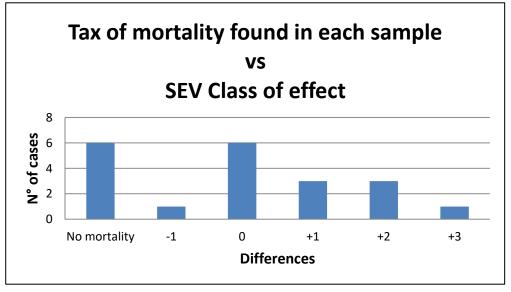
- x: duration of exposure (h)
- y: suspended solids concentration (mg/l)

Model [*]	Taxonomic Group	Status
[1]	Juvenile and Adult Salmonids	Peer Reviewed [**]
[2]	Adult Salmonids	Peer Reviewed [**]
[3]	Juvenile Salmonids	Peer Reviewed [**]
[4]	Eggs and Larvae of Salmonids and Nonsalmonids	Peer Reviewed [**]
[5]	Adult Estuarine Nonsalmonids	Peer Reviewed [**]
[6]	Adult Freshwater Nonsalmonids	Peer Reviewed [**]
[7]	Freshwater Invertebrates, and Freshwater Flora	Draft-level Model
[8]	Freshwater Invertebrates	Draft-level Model
[9]	Freshwater Flora	Partial data


SEV	Description of effect [*]	of effect [*]	
	Nil effect		
0	No behavioral effects		
	Behavioral effects		
1	Alarm reaction		
2	Abandonment of cover		
3	Avoidance response		
	Sublethal effects		
4	Short-term reduction in feeding rates;		
	short-term reduction in feeding success		
5	Minor physiological stress;		
	increase in rate of coughing;		
	increased respiration rate		
6	Moderate physiological stress		
7	Moderate habitat degradation;		
	Impaired homing		
8	Indications of major physiological stress;		
	long-term reduction in feeding rate;		
	long-term reduction in feeding success;		
	poor condition		
	Lethal and paralethal effects		
9	Reduced growth rate;		
	delayed hatching;		
	reduced fish density		
10	0-20% mortality;		
	increased predation;		
	moderate to severe habitat degradation		
11	>20-40% mortality		
12	>40-60% mortality		
13	>60-80% mortality		
14	>80-100% mortality		

Fish analyses

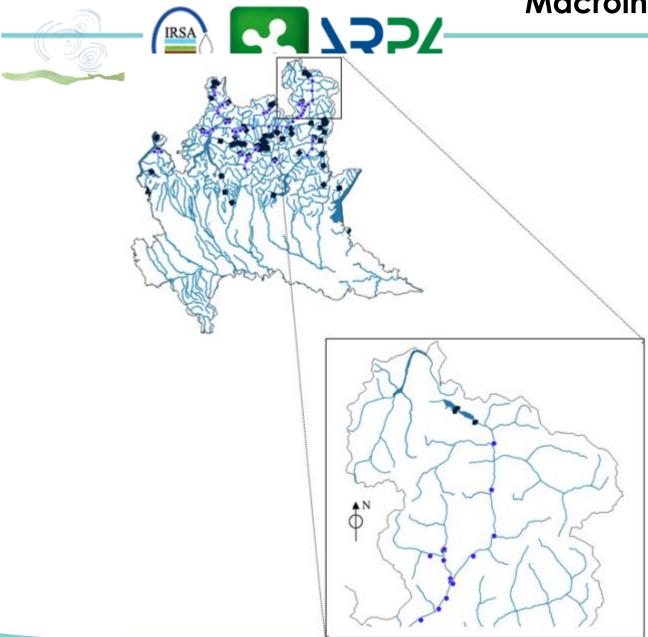
Application of SEV to 21 stations interested by flushing operations



Fish analyses

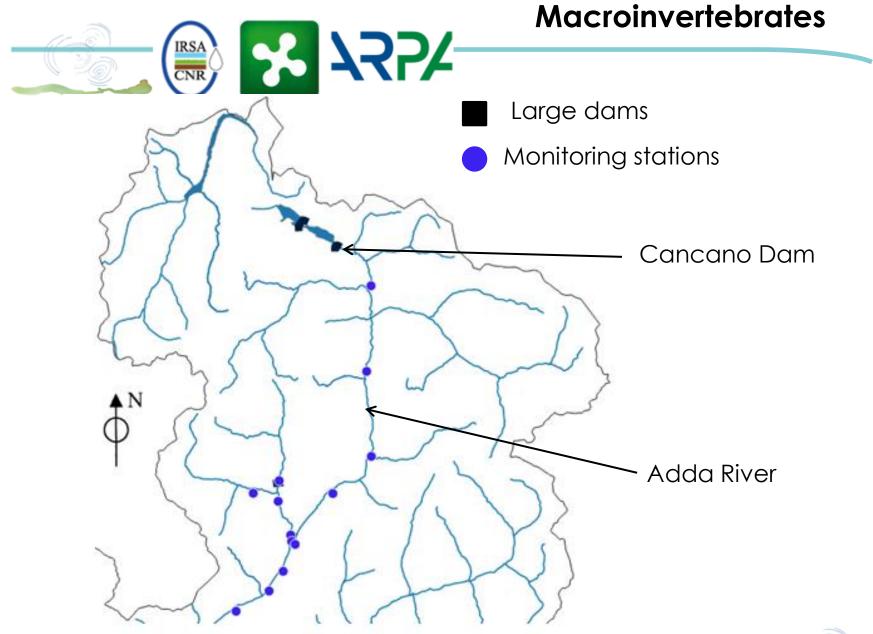
- On these 21 stations \rightarrow Pre-post fish data. Samples collected before the events and about 1 month after the end of the flushing events.
- Calculation of mortality for each stations

- -1: SEV overestimates the mortality found in the samples. 1 Class of differences (20 %)
- 0: Correspondence between SEV classes and mortality found in the samples
- +1: SEV underestimates the mortality found in the samples. 1 Class of differences (20 %)
- +2: SEV underestimates the mortality found in the samples. 2 Class of differences (40 %)
- +3: SEV underestimates the mortality found in the samples. 3 Class of differences (60% or more)



Fish analyses

- SEV model seems to underestimates the real effects. Nevertheless the model could provide information about flushing events effect → Could be useful in the planning phase of the event
- A specific SEV model adapted to this area could be developed to better predict the effects
- In some cases there was no mortality but the community increased: probably fauna input provided by local fishermen (Even though the regional directives provide for measures to avoid repopulation)



Macroinvertebrates study area

Macroinvertebrates

Macroinvertebrates study area

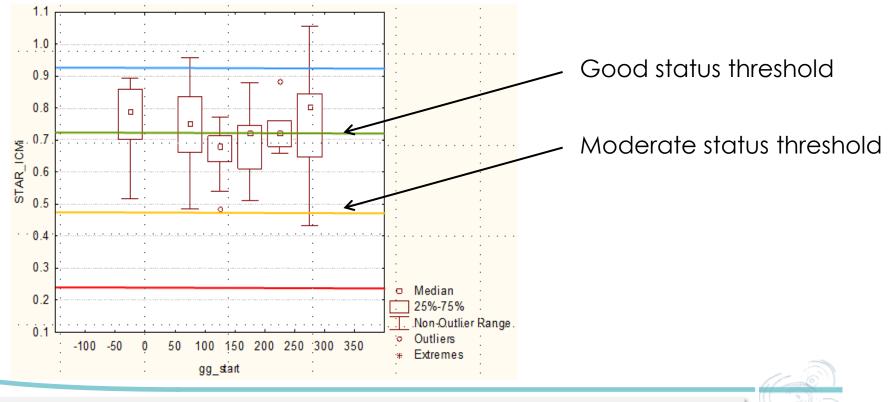
Macroinvertebrates analyses on Adda river donwstream Cancano Dam

- 4 flushing operations (2010-2011-2012-2013)
- 4 monitoring Stations: ADDA1-4
- ≈ 100 samples considered in the analyses

From A2A Reports of flushing operations

Macroinvertebrate index officially in use in Italy for ecological status evaluation: STAR_ICMi (Buffagni et al., 2007; DM260/2010)

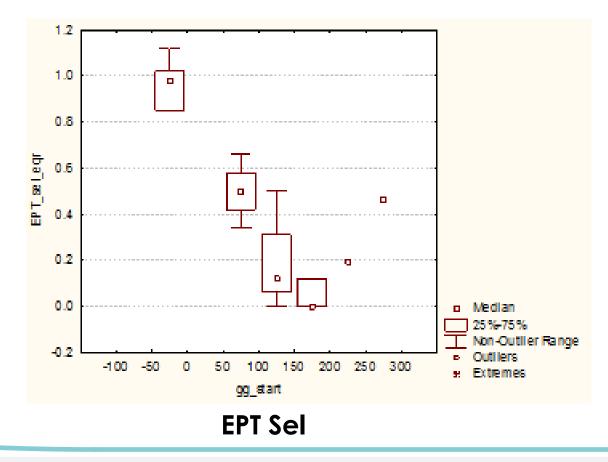
Туре	Metric type	Metric name	Taxa considered in the metric	Literature reference	weight
Tolerance	Index	ASPT	Whole community (Family level)	e.g. Armitage et al., 1983	0.333
Abundance/ Habitat	Abundance	Log ₁₀ (Sel_EPTD +1)	Log(sum of Heptageniidae, Ephemeridae, Leptophlebiidae, Brachycentridae, Goeridae, Polycentropodidae, Limnephilidae, Odontoceridae, Dolichopodidae, Stratyomidae, Dixidae, Empididae, Athericidae & Nemouridae)	Buffagni et al., 2004; Buffagni & Erba, 2004	0.266
	Abundance	1-GOLD	1 - (relative abundance of Gastropoda, Oligochaeta and Diptera)	Pinto et al., 2004	0.067
Richness and Diversity	Taxa number	Total number of Families	Sum of all Families present at the site	e.g. Ofenböch et al., 2004	0.167
	Taxa number	number of EPT Families	Sum of Ephemeroptera, Plecoptera and Trichoptera taxa	e.g. Ofenboch et al., 2004; Böhmer et al., 2004.	0.083
	Diversity index	Shannon-Wiener diversity index	$D_{S-W} = -\sum_{i=1}^{s} \left(\frac{n_i}{A}\right) \cdot \ln\left(\frac{n_i}{A}\right)$	e.g. Hering et al., 2004; Böhmer et al., 2004.	0.083


Intercalibration Common Metrics (ICMs) used in the STAR ICMi

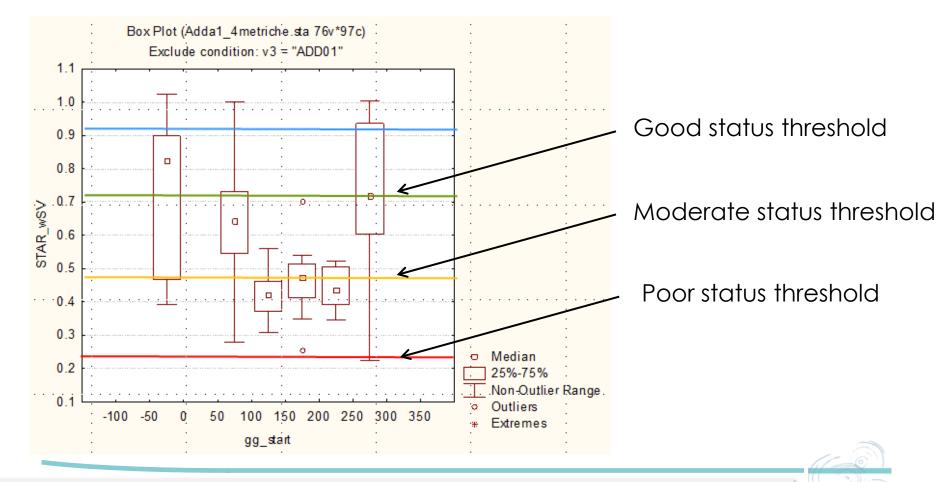
- Developed to assess general degradation in river site
- Requested identification level is family
- Some of the metrics require information about abundance of collected taxa

Multivariate analysis (MRT) based on days distance from flushing operations \rightarrow 6 groups of sites identified: 1 group before operations – 5 groups after

Application of STAR_ICMi to the samples of each group:


Selection of new metrics to downweight STAR_ICMi \rightarrow detect the specific impact of the flushing events

Code (preliminary)	Taxa considered
EPT_sel	e.g.
	Heptageniidae
	Perlodidae
FOS_all	e.g.
	Empididae
	Limoniidae
1-CPOM_taxa	e.g.
(Coarse Particulate Organic Matter)	Elmidae
	Nemouridae



Selection of new metrics to downweight STAR_ICMi \rightarrow detect the specific impact of the flushing events

Applications of new metrics \rightarrow STAR_ICMi downweighted:

- STAR_ICMi with downweight seems to detect the impact from flushing operations
- Results will be confirmed by applications in other basins
- The index could be a useful tool for evaluate past operations and planning the new operations

Thank you for your attention

d.demartini@protheagroup.com

