

Uncertainty assessment on erosion of cohesive sediment in the Upper Rhine: Implications for sediment management

T. Hoffmann¹, <u>G. Hillebrand¹ & M. Noack²</u>

¹ Federal Institute of Hydrology, Koblenz, Germany

² Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Germany **SedNet, Genoa** June 14th – 17th 2017

Upper Rhine

Construction of 10 dams in the southern Upper Rhine...

- ... to control water levels and improve navigation
- ... for hydropower purposes

Sediment retention

Construction of 10 dams in the southern Upper Rhine...

- ... to control water levels and improve navigation
- ... for hydropower purposes

Reservoirs upstream of the dams retain 100 % of bed load (sand/gravel) and ~ 15 % of suspended load

Frings & Hillebrand (2017)

HCB contamination

Construction of 10 dams in the southern Upper Rhine...

- ... to control water levels and improve navigation
- ... for hydropower purposes

Hexachlorbenzene emission into the Upper Rhine (1970-1990)

Highly toxic aromatic compound (dirty dozen) strongly associated to fine sediment

Year

1997

1998 1999 2000 2001 2002 2003

1993 1994 1995 1996

2006 2007

2005

2004

HCB contamination

Erosion modelling

Risk of erosion of contaminated and cohesive sediments

<u>Widely-used erosion law:</u> $M = M_0 \times (\tau_b / \tau_c - 1)$

 $M = erosion \ rate$ $M_0 = erodibility$ $\tau_b = bed \ shear \ stress$ $\tau_c = critical \ shear \ stress$

Erosion modelling

Risk of erosion of contaminated and cohesive sediments

Widely-used erosion law:

large uncertainty & variability➢ no universal law to predict

Aims

- Model the long-term (approx. 60 to 100 years) erosion and deposition dynamic in the 10 reservoirs of the Upper Rhine
- ② Evaluate the uncertainty of the model results

Risk of erosion of contaminated and cohesive sediments

Widely-used erosion law:

 $\times (\tau_b (\tau_c - 1))$ M

Scale not appropriate for complex CFD-models

large uncertainty & variability➢ no universal law to predict

Methods

- (1) Find statistical models to predict M_0 and τ_c
- 2 Evaluate uncertainty of erosion model: M=M₀($\tau_{\rm b}/\tau_{\rm c}$ -1)
- ③ Develop and apply sedimentation/erosion model to predict dynamics of cohesive sediment in reservoirs

1. Prediction: M, τ_c

- 12 × 1m-drillings in Iffezheim reservoir
- Estimates of grain size, bulk density, critical shear stress & erosion rate (Noack et al 2014)
- Bootstrap regression:

$$\tau_{\rm c} = \frac{1}{77.5} \left[3.2(\rho_{\rm s} - \rho_{\rm w}) \mathrm{gd}_{50} + \left(\frac{\rho}{\rho_{\rm con}}\right)^{10} \frac{\mathrm{k}}{\mathrm{d}_{50}} \right]^{10} \frac{\mathrm{k}}{\mathrm{d}_{50}}$$
$$\mathrm{M} = \mathrm{M}_{0} \times \left(\tau_{b}/\tau_{c} - 1\right)$$

1₅₀

1. Prediction: M, τ_{c}

	τ_{c}	Μ
RMSE	0.32 Nm ⁻²	10.8 × 10 ⁻³ kg m ⁻² s ⁻¹
Coef. of variation	0.51	1.01

2. Uncertainty of modeled M

$$\mathbf{M} = \mathbf{M}_0 \times \left(\tau_b / \tau_c - 1 \right)$$

 $M_0 = (5.53 \pm 0.6) \times 10^{-3} \text{ kg m}^{-2}\text{s}^{-1}$ $\tau_c = 0.62 \pm 0.32 \text{ Nm}^{-2}$

2. Uncertainty of modeled M

$$\mathbf{M} = \mathbf{M}_0 \times \left(\tau_b / \tau_c - 1 \right)$$

 $M_0 = (5.53 \pm 0.6) \times 10^{-3} \text{ kg m}^{-3} \text{s}^{-1}$ $\tau_c = 0.62 \pm 0.32 \text{ Nm}^{-2}$

2. Settling/erosion dynamics

1D settling/erosion model

- Sedimentation: hindered settling approach
- (2) Erosion: M = M₀(τ_b/τ_c -1) for $\tau_b > \tau_c$
- 3 Application to Iffezheim reservoir
 - Main deposition = weir
 - Weir through flow at Q > 1100m³/s
 - $\tau_b = f(Q)$

bulk density [kg m³]

2. Settling/erosion dynamics

1D settling/erosion model

- Sedimentation: hindered settling approach
- (2) Erosion: M = M₀(τ_b/τ_c -1) for $\tau_b > \tau_c$
- ③ Application to Iffezheim reservoir (Example: 2007)
 - Main deposition = weir channel
 - Weir discharge at Q > 1100m³/s
 - $\tau_b = f(Q)$

3. Settling/erosion dynamics

- Echo-sounding: strongest sedimentation during flood (τ_b~6 Nm²)
- Contradicts
 evidences from
 erosion modelling

Bundesanstalt für Gewässerkunde

- (1) Prediction of τ_c and M in the order of 50% and 100%, respectively.
- ② Vertical 1D model covers general behavior of dynamics of cohesive sediment in reservoirs
 - Appropriate to model long-term evolution!
- ③ But large uncertainty
 - Improved erosion model required
 - Stochastic approach required

Thank you!

Dr.-Ing. Gudrun Hillebrand

Federal Institute of Hydrology

Department M3 – Groundwater, Geology, River Morphology

56068 Koblenz, Germany

e-Mail: hillebrand@bafg.de

www.bafg.de