

Implications of spatial distribution of suspended sediment concentrations on reservoir management, case study Iffezheim

<u>G. Hillebrand¹</u>, I. Klassen² & N.R.B. Olsen³

- ¹ Federal Institute of Hydrology, Koblenz, Germany
- ² Karlsruhe Institute of Technology, Karlsruhe, Germany
- ³ The Norwegian University of Science and Technology, Trondheim, Norway

SedNet, Genoa June 14th – 17th 2017

Iffezheim reservoir, Upper Rhine

Figures: Frings, R.M., Hoffmann, T., Hillebrand, G., Gehres, N., Banhold, K., Schriever, S. (in revision): FROM SOURCE TO MOUTH: BASIN-SCALE MORPHODYNAMICS OF THE RHINE RIVER. Earth Science Reviews.

- Last of 10 reservoir of the Upper Rhine
- completed in 1977
- used for hydropower, navigation and flood protection
- German Waterways and Shipping Administration responsible for sediment management

Bundesanstalt für Gewässerkunde

Iffezheim reservoir, Upper Rhine

- Net deposition rate as function of discharge:
 - sediment supply from upstream
 - deposition rate of sediments
 - erosion of deposited sediments during floods
- Influence of changes in reservoir operation (e.g. additional turbines)

Iffezheim

Gambsheim

	Average dredged volume (1995 – 2005)	
Iffezheim	ca. 210.000 m³	
Gambsheim	ca. 60.000 m ³	

Measurement station Plittersdorf (downstream of the Iffezheim reservoir)

Spatial distribution of SSC

3D-model of suspended sediment transport

SSIIM

Total number of cells: 612.543

Results I

- Net deposition rate as function of discharge:
 - sediment supply from upstream
 - deposition rate of sediments

Influence of changes in reservoir operation (e.g. additional turbines)

Suspended load entering weir channel

Portion of susp. load entering weir channel – a function of discharge?

• 11 ADCP measurement campaigns

Date	Discharge (m³∕s) (km 332.9)	Portion weir channel
10.06.2010	1555	38,8 %
31.01.2011	791	3,9 %
07.02.2011	710	- 6,9 %
08.02.2011	730	- 4,5 %
25.01.2012	1673	31,1 %
26.01.2012	1519	20,2 %
14.05.2012	1609	24,9 %
15.05.2012	1545	20,5 %
16.05.2012	1422	58,1 %
12.06.2012	2025	77,6 %
13.06.2012	2679	62,1 %

Measurements

• 11 ADCP measurement campaigns

Division of suspended loads on average (4T)

Influence of changes in reservoir operation (e.g. additional turbines)

- less sediment input to deposition areas
 Jower deposition rates
- ▶ <u>but</u>: lower discharges in deposition areas
 → potentially less erosion

 $\Sigma = ?$

Thank you!

Dr.-Ing. Gudrun Hillebrand

Federal Institute of Hydrology

Department M3 – Groundwater, Geology, River Morphology

56068 Koblenz, Germany

e-Mail: hillebrand@bafg.de

www.bafg.de