

Samenvatting

Sedimenten maken een integraal onderdeel uit van watersystemen. Enerzijds vormen zij de voedingsbodem voor organismen en spelen zij door de interactie met het erboven gelegen water een wezenlijke rol in het aquatische ecosysteem (bijv. in de voedingscyclus). Anderzijds blijven in het sediment gevaarlijke chemische stoffen uit verschillende bronnen achter, en zelfs als de kwaliteit van het water verbetert, blijft de verontreiniging in het sediment nog aanwezig ("last uit het verleden").

Tegenwoordig vinden we op plaatsen met een geringere stroming in de rivieren (bijv. in overloopgebieden, in rivierrivieren en langs kribben) relatief onverontreinigde bovenste sedimentlagen die over de oudere verontreinigde sedimentlagen heen zijn komen te liggen. Desondanks wordt – als gevolg van hogere waterafvoeren en het steeds vaker optreden van overstromingen – het risico steeds groter dat oude, verontreinigde sedimentlagen weer in beweging komen en verontreinigde deeltjes stroomafwaarts in het riviersysteem belanden. Ook kan tijdens oppervlakteafvoer van de landbodem of als gevolg van erosie, verontreinigd materiaal in de riviersystemen terechtkomen. Dit rapport richt zich op de historische verontreiniging van sediment; aan verontreinigde locaties op het land wordt slechts in geringe mate aandacht besteed.

Binnen het kader van dit project zijn de risico’s voor de Rotterdamse haven beoordeeld die het stroomopwaarts weer in beweging raken van historisch verontreinigde sedimenten met zich mee brengen als gevolg van natuurlijke gebeurtenissen (bijv. overstromingen) of menselijke activiteiten (bijv. baggeren).

Figuur 1 Paden en processen van transport van historische verontreinigingen naar stroomafwaarts gelegen delen van riviersystemen. Locaties die in dit rapport van belang zijn, zijn vet weergegeven.
Tot op heden heeft er nog geen diepgaand onderzoek naar de huidige potentiële verontreiniging van oudere, afgedekte sedimentlagen in het Rijnstroomgebied plaatsgevonden; ook in andere stroomgebieden is nog nooit een soortgelijk onderzoek uitgevoerd. Om deze reden is een gedetailleerd overzicht van de relevante en aanwezige informatie uitgevoerd en zijn er nieuwe conceptuele methoden ontwikkeld.

In het rapport wordt een overzicht gegeven van de belangrijkste processen die van invloed zijn voor de hydraulische en chemische mobilisatie; tevens wordt de overgang van verontreinigingen naar organismen beschreven. Het rapport geeft een overzicht van de kwaliteitseisen van de sedimentgegevens, met daarbij ook de beoordeling van water en sedimenten en de kwaliteitscontrole van de in het veld en in laboratoria gevonden gegevens. Besproken worden eveneens de kwaliteitseisen en onzekerheden met betrekking tot hydraulische gegevens – het belangrijkste onderdeel van deze studie. Daarnaast wordt een samenvatting gegeven van de meest recente ontwikkelingen in het stroomgebied op het gebied van sedimentmanagement. De informatie met betrekking tot chemische en biologische sedimentgegevens in relatie tot de strategieën voor de kwaliteitscontrole van de analyse en monitoring van de prioritaire stoffen uit de Europese Kaderrichtlijn Water wordt ook behandeld.

Dit uitgebreide overzicht toont aan dat er sprake is van lacunes in de kennis van de potentiële gevolgen van hoge rivierafvoeren op afgezet sediment – wat het noodzakelijk maakt om een deductieve aanpak te ontwikkelen. Deze aanpak bestaat uit 3 stappen.

Tabel 1 Aandachtsstoffen met classificatie

<table>
<thead>
<tr>
<th>Aandachtsstof</th>
<th>Gevaarklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>2</td>
</tr>
<tr>
<td>Chroom</td>
<td>1</td>
</tr>
<tr>
<td>Koper</td>
<td>1</td>
</tr>
<tr>
<td>Kwik</td>
<td>2</td>
</tr>
<tr>
<td>Nikkel</td>
<td>1</td>
</tr>
<tr>
<td>Lood</td>
<td>1</td>
</tr>
<tr>
<td>Zink</td>
<td>1</td>
</tr>
<tr>
<td>DDT+DDD+DDE (totaal)</td>
<td>2</td>
</tr>
<tr>
<td>Dioxinen en Furanen</td>
<td>2</td>
</tr>
<tr>
<td>Hexachloorbenzeen</td>
<td>2</td>
</tr>
<tr>
<td>Polycyclische aromatische koolwaterstoffen</td>
<td>2</td>
</tr>
<tr>
<td>Polygechloroerd bifenyl</td>
<td>2</td>
</tr>
<tr>
<td>TBT</td>
<td>1</td>
</tr>
<tr>
<td>Aldrin (Dieldrin, Endrin)</td>
<td>1</td>
</tr>
<tr>
<td>γ-hexachloorcyclohexaan</td>
<td>1</td>
</tr>
<tr>
<td>Nonyl-fenol verbindingen</td>
<td>1</td>
</tr>
</tbody>
</table>

Stap 1. Selectie van aandachtsstoffen

Slechts die stoffen zijn gekozen, die voor het management van de Rotterdamse haven een punt van zorg zijn omdat ze vaak de normen van de nieuwe Nederlandse Chemie-Toxiciteitstoets (CTT) overschrijden. Deze **aandachtsstoffen** zijn vervolgens op basis van hun werking in het milieu en hun potentiële gevaar voor organismen in verschillende gevaarklassen ingedeeld.
Stap 2. Selectie van aandachtsgebieden

Stap 2 bestond uit het bepalen – aan de hand van beschikbare analysegegevens van de sedimenten over de afgelopen 10 jaar – van de gebieden in de Rijn en haar zijrivieren waarin de aanwezigheid van aandachtsstoffen de normen van de CTT overschrijden en daarmee mogelijk verhoogde verontreinigingconcentraties in de Rotterdamse haven tot gevolg zouden kunnen hebben. Deze aandachtsgebieden (afbeelding 2) zijn geclassificeerd op basis van de mate van verontreiniging en de beschikbare gegevens, met het doel, een overzicht te kunnen geven van de verdeling van de huidige ‘gevaren’ van deze sedimenten in de Rijn. Hierna volgde een onderzoek naar de informatie met betrekking tot de historische emissies; doel van dit onderzoek is a) het kunnen bepalen van de verontreinigingsbronnen van deze sedimenten; b) de mogelijkheid nagaan of de verontreiniging op deze locaties voortduurt, en c) het verzamelen van informatie over de managementmogelijkheden tegen de achtergrond van het potentiële voortbestaan van de bronnen en de verspreiding van de verontreiniging.

Figuur 2. Aandachtsgebieden en hun classificatie op basis van sedimentverontreiniging

Stap 3. Kwantificering van het risico voor de Rotterdamse haven

Om het risico te kunnen beoordelen dat de waterbodem in de haven vanwege deze "aandachtsstoffen" uit de genoemde "aandachtsgebieden" kan oplopen, is een schatting nodig van de mate van verontreiniging, de erosie en het daaropvolgende transport in het stroomgebied. Door het ontbreken van gegevens over overstromingen, de verontreinigingsvrachten aan zwevend materiaal en modellen waarmee een compleet beeld van de risicogebieden wordt verkregen, is een aanpak gehanteerd waarin de resultaten gebaseerd zijn op verschillende vormen van bewijs. Om te kunnen beoordelen of de omvang van de verontreiniging groot genoeg was om de CTT-norm in de Rotterdamse haven te overschrijden, is een "worst-case" aanpak toegepast waarbij gebruik werd
gemaakt van een normale waterafvoer, “gemiddeld hoog water” en de “hoogste ooit waargenomen waterafvoer”. Bovendien werd aangenomen dat de sedimentverontreiniging van het zwevende materiaal rechtstreeks in relatie staat tot de waterafvoer, resulterend in concentraties van resp. 20, 150 en 250 mg/l. Ook is aangenomen dat het verontreinigde sediment op een specifieke locatie in zijn geheel in de waterfase terechtkomt en dat de sedimentconcentraties gelijk zijn aan de verontreinigingsconcentraties van het zwevende materiaal. Er is geen rekening gehouden met vermenging met eerder afgezette sedimenten in de Rotterdamse haven. Bovendien zijn de CTTwaarden rechtstreeks met de berekende concentraties vergeleken.

Door deze laatste stap kon het aantal “aandachtsgebieden” van twaalf tot vijf worden teruggebracht:
1) De stuwen in de Bovenrijn zijn de enige die zelfs onder normale omstandigheden (gemiddelde waterafvoer, geen managementactiviteiten) al een risico vormen; reeds bij een normale rivierafvoer worden er in Iffezheim verhoogde concentraties aan hexachloorbenzeen (HCB) in het zwevende materiaal gemeten. Bij een hogere afvoer wordt HCB (en mogelijk ook kwik) weer in beweging gebracht en stroomafwaarts meegevoerd. Omdat er vanaf de verder zuidelijk gelegen stuwen (bovenstroms) continu verontreinigd sediment wordt aangevoerd, de locale opslaglocaties voor sedimenten vol raken en aanzienlijke lacunes bestaan in de kennis van de transportprocessen, terwijl er nog steeds sprake is van hoge concentraties aan HCB in het sediment, is dit gebied een belangrijke uitdaging voor het management van de sedimenten in de toekomst.
2) De Ruhr vormt momenteel een risico bij hoge rivierafvoeren. Het is zeer denkbeeldig dat hoge concentraties aan polycyclische aromatische koolwaterstoffen (PAK's), maar ook andere stoffen (in het bijzonder cadmium) in deze zijrivier weer in suspensie raken en stroomafwaarts meegevoerd worden. Er dient te worden opgemerkt dat er in de Ruhr een aantal projecten geïnitieerd zijn, die een positief effect op de verontreiniging (afname) kan hebben die vanuit deze rivier de Rijn opstromen.
3) Ook de Neckar kan een risico vormen. De prognose is dat vanwege de geringe stabiliteit van de sedimenten ter plaatse van de stuwe Lauffen weer cadmium in beweging gebracht kan worden; voorts is er op deze locatie een verhoogde cadmiumconcentratie in het zwevende materiaal gemeten. Het niet zeker of dit sediment na het passeren van 13 andere stuwen in de Rijn terecht kan komen, omdat van het meetstation Feudenheim nabij Mannheim (het laatste station voordat de Neckar de Rijn bereikt) overstromingsgegevens ontbreken. Anderzijds heeft men echter geen enkele andere cadmiumbron dan de Neckar kunnen vaststellen, die voor de cadmiumvrachten van meer dan 1000 mg/sec. op de monitoringstations Koblenz (Rijn) en Bad Honnef verantwoordelijk zou kunnen zijn.
4) Op basis van een vergelijking van de verontreinigingspatronen van de sedimenten uit de zijrivier de Wupper met die in de havens langs de Nederrijn (stroomafwaarts van de monding van de Wupper), en vooral op het monitoringstation in de haven van Hittorf, kon worden afgeleid dat er een risico bestaat dat vanuit de Wupper historisch verontreinigde sedimenten worden aangevoerd. In alle gevallen is een vergelijkbaar verontreinigingspatroon te zien, waardoor de indruk ontstaat dat het effluent uit de Wupper het sediment in de Rijn beïnvloedt. De beschikbare informatie is echter onvoldoende om te kunnen bepalen of dit materiaal verder stroomafwaarts meegevoerd wordt, omdat de mate van erosie in de sedimenten in deze havens niet bekend is.
5) Er zijn aanwijzingen dat bij hoge waterstanden de zijrivier de Lippe aan de HCB-belasting in de Rijn bijdraagt. Wanneer de piek van een vloedgolf de Rijn bereikt voordat de vloed uit de Rijn zelf arriveert, kan de verdunning van het zevende materiaal uit de Lippe zelfs zó laag zijn dat het meegevoerde verontreinigde zevende materiaal in de Rotterdamse haven tot een verhoging van de HCB-concentratie zou kunnen leiden. Dit laatste geval maakt duidelijk hoe gecompliceerd het is, voorspellingen te doen, aangezien de afvoerpatronen in het Rijnstroomgebied uiterst variabel zijn.

Uit een overzicht van bestaande regelgeving is gebleken dat er voor de erosie van verontreinigde sedimenten en de potentiële gevolgen daarvan voor de stroomafwaarts gelegen delen van een rivier en dus ook in de delta- en de kustgebieden geen regelgeving bestaat. De huidige regelgeving richt zich op locale gevolgen van de verspreiding van verontreinigde sedimenten; hierbij wordt geen rekening gehouden met het stroomgebied in zijn geheel. Anderzijds worden in de Europese Kaderrichtlijn Water, waarin men zich wél op het hele stroomgebied richt, geen sedimenten expliciet genoemd en wordt niets gezegd over de kwaliteit en de kwantiteit van sedimenten. Bij de strategieën die tegen de chemische verontreiniging van oppervlaktewateren (artikel 16 van de Kaderrichtlijn Water) worden gehanteerd, d. i. bij de implementatie van monitoringsprogramma’s uiterlijk voor 2006 en bij het opstellen van de maatregelenpakketten, die uiterlijk in 2009 ingevoerd moeten zijn, zal rekening gehouden moeten worden met de kwaliteit van de sedimenten in het gehele stroomgebied. Wat de laatstgenoemde datum betreft moet worden vermeld dat al tijdens de eerste fase van de invoering – het screenen van alle generieke bronnen die kunnen bijdragen aan het vrijkomen van prioriteitsstoffen en prioritair gevaarlijke stoffen – de specifieke bron “historische verontreiniging uit sedimenten” zal worden meegenomen.