Sustainable Urban and Environmental Management Restoration Applications Using Sediment Treatment Systems with Beneficial Use

E.A. Stern – US Environmental Protection Agency Region 2, New York USA K.W. Jones – Brookhaven National Laboratory, Upton, New York W.S. Douglass – New Jersey Department of Transportation, Trenton, New Jersey M.A. Kruge & H.E. Feng - Montclair State University, Montclair, New Jersey L.A. Baron – U.S. Army Corps of Engineers/NY District, New York

Urban Sediment Management and Port Redevelopment
Sediment in River Basin Management Plans
5th International SedNet Conference
28 May 2008

Urban Environmental Management

- Sustainability (long-term)
- Ecopsychology (Urban Sed. Mgmt.)
 - Behavioral understanding of moving forward
 - Urban City / Port Environment
 - Leadership
 - Education (K-12) / Outreach
 - Different brain wiring (political)
- Integrated Sediment Management
 - Hybrids Holistic Treatment Train Approaches
 - Multi Contaminants / Media
 - Regional Sediment Management (watersheds/basins)
- Beneficial Use
 - Un-renewable resources

LANDFILL CAPACITY WILL BECOME CRITICAL IN THE NORTHEAST U.S

US < than 20 years of disposal capacity

Integrated Urban Contaminated Sediment Management

Multi complex contaminants (TCDD, PAHs, Pb, Hg, Cr, TBT)

- Materials Handling
 - dewatering, pumping, geo-tubes
- Environmental Precision Dredging
 - Cable Arm, Hydraulic
 - Geophysical debris fields
- Capping
 - Active/Reactive Core Mats
- Stabilization/Solidification (portland cement) + (oxidation)
 - H₂0₂, KMNO₄, NaS₂O₈

- CDFs (upland & nearshore)
- CADs (aquatic)
 - Siting is becoming a challenge / aquatic real estate
- Ex-situ / In-Situ Innovative Sediment Technologies
 - > Thermal
 - Non-thermals
 - In-Situ Stabilization (cement injection) / caps
- In-Situ Bioremediation
 - Mudflats

INTEGRATE PHYSICAL INFRASTRUCTURE IN ALL ALTERNATIVES

Monitored Natural Attenuation

Urban Environmental Sustainability

National Sediment Management Programs

- USEPA Contaminated Sediment Management Strategy (1998)
 - Superfund focus
- EU Sediment Research Network (SedNet) (2000-2006)
 - Multi-national River Basins
 - 2008 SedNet Conference / Oslo
- Clean and Rich Oceans (2002)
 - Norwegian Parliamentary Bill 12
- USACE Regional Sediment Management (RSM) (2004)
 - Coastal Processes

Regional Sediment Management

- System-based (watershed) approach that seeks to solve sediment-related problems by designing solutions that fit within the context of a regional strategy and sediment system
 - Recognizes sediments as a resource
 - Sediment processes (coastal/estuarine)
 - Integral to environmental / economic vitality
 - Engage Stakeholders
 - Achieve long-term balance and sustainable solutions

Urban / Port Impacts

- Contaminants in sediment:
 - Pose an ecological and human health risk in the river and contributes to risk harborwide;
 - Contribute to contaminant loading in the harbor (on-going sources)
 - Regional Sediment Management (Watersheds)
 - Impact dredged material and port management
 - Impact future waterfront development opportunities (weak link)

Passaic River, NJ – Port Newark Downstream 2,3,7,8-TCDD / Mercury Contamination

Passaic River (3D)

Passaic River / Newark Bay

TCDD

Mercury

Port of NY & NJ - Navigation

Use of Innovative Technologies Positioning for the Future Environmental Sustainability Environmental Manufacturing Beneficial Use

Positioning for the Future

- Life Cycle Assessment
 - What is the cost associated (long-term)?
 - Environmental, economic, social
 - Of not (environmental sustainability)
 - Diminishing natural resources
 - Waste minimization
 - Landfill Closures for most contaminated sediments
 - Lack of real-estate (CAD's/CDF's)
 - Loss of Benthic Habitat / wetlands / channel configuration
 - Short vs. long-term vision
 - ✓ Application of Innovative Decontamination Technologies with Beneficial Use

3rd International SedNet Conference 25-26 November, 2004 – Venice, Italy Contaminated Sediments - European River Basin *Final Recommendations*

- Stimulate innovation to more efficient treatment technologies:
 - sustainability
- To date treatment technologies are too costly
 - (THIS IS CHANGING 2008)
 - Large amounts of sediments
 - Dredging and processing rates can't keep up
 - (REGIONAL STORAGE FACILITIES PPF / CDF/CAD- 2008)
- Technology itself is not the problem
 - Diversity of technologies are available

Moved From Bench-scale to Pilot-scale (1994-2003) to presently in 2005-2007 Full/Commercial Scale Demonstrations

Ex-SituTreatment Technologies Tested USEPA/NJDOT Decontamination Programs (1994-present)

- Sediment Washing *
- Thermo-Chemical Rotary Kiln *
- Plasma-Arc Vitrification (EPA)
- Base-Catalyzed Decomposition (EPA)
- Rotary Kiln -Thermal Desorption
- Solvent Extraction (EPA)
- Solidification/Stabilization with Oxidation *
- Fluidized Bed Reactor (EPA)

Technologies with Beneficial Use

- Gas Technology Institute/Endesco
 - Thermo-chemical rotary kiln (cement and co-gen)
- BioGenesis Enterprises
 - Sediment washing (soils, bricks, polymer coating)
- Upcycle / BayCycle Aggregates
 - Rotary kiln (light-weight aggregate)
- Harbor Resource Environmental Group, Inc.
 - Solidification/stabilization/oxidation (structural fill)
- Westinghouse/The Solena Group
 - Plasma-arc vitrification (glass tiles / co-generation)

NY/NJ Harbor Sediment Decontamination Program Demonstrations: 2005-2007 Bayshore Recycling Processing Facility – Keasbey, NJ (Raritan River)

New York / New Jersey Harbor Sediment Decontamination & Beneficial Use Demonstration Project

Cement-Lock® Technology

Sponsored By:

Gas Research Institute

U.S. Environmental Protection Agency Region 2

U.S. Department of Energy Brookhaven National Laboratory

- U.S. Army Corps of Engineers (New York District)
- funding from the federalWater Resources DevelopmentAct (WRDA)
- New Jersey Office of Maritime Resources
 - funding from NJ Environmental Bond Issue

Technology Developer: Gas Technology Institute

Site Host:

International-Matex Tank Terminal – Bayonne

General Contractor:

RPMS Consulting Engineers

Equipment Manufacturer:

Andersen 2000 Inc.

Technology Licensor:

Cement-Lock Group, L.L.C.

Pilot-Scale Unit - GTI Cement-Lock 1996

Cement-Lock Technology

ati.

Beneficial Use Construction Grade Cement/Concrete

Phase II Demo Project – Results DRAFT

Extended Duration Test – December 2006 (NEWARK BAY)

- Dioxin/furans in flue gas was 1.3e-10 lb TEQ/hr or 58.8 ng TEQ/hr
- > Dioxin/furans DRE was 99.9994%
- > PCBs in flue gas was 1.2e-4 lb/hr
- > PCBs DRE was 97.0%
- > Mercury capture efficiency of AC bed was 86.7%

Extended Duration Test – May 2007 (PASSAIC RIVER)

- Dioxin/furans in flue gas was 3.3e-12 lb TEQ/hr or 1.5 ng TEQ/hour
- > Dioxin/furans DRE was 99.999986%
- > PCBs in flue gas 1.2e-6 lb/hr
- > PCBs DRE was 99.957%
- Mercury capture efficiency of AC bed was 97.8%

ECH

BioGenesis Sediment Washing Bench-Scale - 1994

BioGenesis Sediment Washing Pilot Demonstration – Kearny, NJ 1999

BioGenesis Pilot Demonstration Venice, Italy Port Authority

January 2004

Process Flow Diagram

BioGenesis[™] Sediment Washing Technology

2006 Full-Scale Demonstration

Organic Contaminant Oxidation

Liquid/Solid Separation - hydrocyclones

Liquid/Solid Separation - Centrifuges

Beneficial Use - Manufactured Soil

 Decontaminated sediment blend with sand and organic material (mulch) to create a high end topsoil

Is this a Good Business?

Uncertainties in Developing Long -Term Business Models

- Unpredictable dredging volume estimates
- Unpredictable dredging cycles
 - Fish migratory windows
- Superfund Construction Schedules
 - Remedial Investigation Process (years)
- Litigation (lawyers)
- Long-Term Contracts
- Government Risk Sharing
- Siting / Permitting,

The Future of Urban Sediment Management

- Develop Long-term Self Sustaining Enterprises in the Environmental Management of Sediments
 - Sediments and other mixed media
 - Urban centers / waste priorities

Environmental Manufacturing

- Multiple Feeds of:
 - Dredged Material (Navigation)
 - Contaminated Sediments (Superfund)
 - Contaminated Soils
 - Coal Ash
 - Construction / Debris
 - Electronic waste
 - Sewage sludge
 - Medical Waste
 - Tires
 - Auto Fluff
 - Food Waste
 - Municipal Solid Waste
- Keeps system economics by supplying constant feed of material
- Diversity of Beneficial Use Products

They're making people every day, but they ain't making any more dirt – Will Rodgers

- Topsoil is being depleted avg/yr 18X faster than what is being built up in nature
 - Takes 2000 yrs to build up 1in of topsoil
- US/California
 - CA agriculture depleting as much as 1in TS every 25 years.
 80x faster than nature
- Developing Nations 36x
- China 54x
 - C.J. Barrow. Land Degradation, Cambridge U. Press. (1981)
 - National Resources Inventory. Soil Conservation Service. USDA, Washington, DC (1992)

Beneficial Use - Manufactured Soil

 Decontaminated sediment blend with sand and organic material (mulch) to create a high end topsoil

Large-Scale Food Composting Montclair State University

- Aerobic Composter
 - Process 2 yd³ / food residue day
 - \$3/day
- 130° F
 - Rotated 4x/hr / 4x/day add wood chips
 - 3 days to process
- Upgrade to large composter for entire MSU
- Combine with decontaminated sediment washed sediment for manufactured soil blending
 - June 2008
- Principal Investigator: Dr. Nicholas Smith-Sebasto

Buckets of Food from MSU Dining Hall for Composting

Bio-Mixer: Food Residue and Wood Chips

Compost ready to be mixed with decontaminated sediment and placed on campus

Case Study Waste to Energy High Temperature System

Electronic Waste(E Waste) as a sustainable co-generation fuel source.

US E-Waste Market

- **Total Estimated US Annual E Waste = 3.2 million tons**
- Estimated E Waste disposal cost = >\$1000 / ton
- Potential US E Waste market = >\$2.5 billion
- **Estimated toxic materials generated:**
 - plastic = 4.0 billion pounds (2million tons)
 Lead = 1.2 billion pounds (600 million lbs.)

 - Mercury = 400,000 pounds (200 tons)
- Est. annual E Waste recycled = 750,000 tons / year (25% of Total)
- Est. E Waste recycling efficiency = 45 %
- Market researcher Gartner Group forecasts Americans will replace or retire 133,000 PCs per day.

Sediments / E-Waste Model

Ecomelt – GTI Cement-Lock Rotary Kiln for contaminated sediments

VOLCANO WTE SUSTAINABILITY APPROACH USING CEMENT-LOCK® THERMAL TECHNOLOGY

Urban Rivers Restoration

February 2003

USEPA / USACE Pilots

- **≻Gowanus Canal, NY**
- **▶**Passaic River, NJ

Gowanus Canal, NY Urban Sediment Restoration

Development Adjacent to the Gowanus Canal

Gowanus Canal Surfacial Sediment Chemistry (Total Priority PAH Concentrations)

2005 samples: STL Laboratory, Edison, NJ 2006 samples: Ft. Monmouth Environmental Testing Laboratory

Montclair State University Passaic River Institute Gowanus Canal Research Team Montclair, NJ, 07043, USA

Pilot Demonstration

 Conduct a pilot-scale demonstration in parallel to the USACE Feasibility Study

- Similar to an Interim Remedial Measure
 - Quick to implement
 - Collect data monitor effect for long-term action. Integrate with final remedy
 - Public Access / Community Support

Pilot Demonstration

AquaBlok Capping

Bulk and Tiering Wetland Restoration

Bionautics Bulk and Tiering System USE

Bionautics Bulk and Tiering System

Gowanus Canal

Summary

- It's a business...... Venture capital interest
- Regional Multi-Media Processing Facilities
 - Treatment Train
- Innovative [ALL] Integrated Technology Driven
- ✓ Sediments are a Resource
- Beneficial Use Applications
- ✓ <u>Long-term linear</u> generational view of Sustainability — it's a social property / right

- 1. LHJ office
- 2. Weighing station
- 3. REF-facility
- 4. REF Storage
- 5. CRT-Finland Ltd
- 6. Cool-Finland Ltd
- 7. Hazardous waste

-A department store for Environmental Services

www.envitech.fi

