Overview of the recommendations of the WG-EG-EQS (ISPRA) concerning environmental quality standards for metals in sediment

SedNet, May 2008

Katrien Delbeke - European Copper Institute (ECI) Marnix Vangheluwe (EURAS-ARCADIS)

On behalf of the WG-EG-EQS – metals subgroup and Eurometaux water working group

Content

- Can we set triggers on the need for sediment QC?

2

- Sediment PNEC setting -MERAG and EU RAs
- Incorporation of bioavailability
- Compliance checking
- Conclusions and future needs

Triggers for setting sediment QC

Principles:

- Sediment Metal quality criteria are relevant, in addition to the setting of water quality criteria **IF** the QC set for the water would not protect benthic organisms appropriately. The following aspect are therefore relevant to assess the need for sediment QC
 - What is the mode of action gill binding?
 - o What is the most relevant toxicity route (water and/or food)?
 - Is there evidence of toxicity from dietary exposure beyond what is observed from water exposure
 - o What integrated toxicity can be expected

Sediment PNEC setting Weight of evidence approach

Derivation of a PNEC sediment 1. Whole sediment toxicity tests-

Q1 data set (# NOECs = 95), 6 species

5

Representativeness

Issues in sediment ecotoxicity : Intra-species variability in NOECs (mg Me/kg dry weight)

Sediments have large variation in characteristics :eg OC and sulphide content

Ensure appropriate pre-equilibration and evaluate water column metal toxicity

6

Metal bioavailability a. Principle of MeS binding

Effectiveness of Me- binding to AVS

Metal bioavailability b. Importance of to OC

Effectiveness of OC binding

Influence OC on ecotoxicity

Variability in EC-50 values, obtained from benthic ecotox tests in different sediments

Species	Total C	Total Cu (mg/kg		OC-normalized Cu	
	EC ₅₀ rat	EC ₅₀ ratio		EC ₅₀ ratio	
	mean	range	mean	range	
Tubifex	2.4	2.2-2.8	1.7	1.3-2.1	
Hyalella	3.3	-	1.1	-	
Chironomus	6.2	4.7-7.7	1.7	1.3-2.0	
Overall	4	2.2-7.7	1.5	1.1-2.1	

De Schamphelaere et al, 2004

10

Suggested under MERAG and accepted for the Cu RA

Metal bioavailability c. Importance of to MnO, FeO..

Derivation of a PNEC sediment Whole sed tests- Data-rich metals

Log normal HC5-50 sed (benthic SSD) = 1741 (1112-2071) mg Cu/kg OC

(13)

Sediment PNEC setting Weight of evidence approach

Derivation of a PNEC sediment 3. Field data and WOE

Metal compliance checking

Conclusions and Future needs

Metals SQC may be needed for metals, passing the trigger criteria

Draft proposal metal EQS is based on metal RARs and MERAG and includes

- A weight of evidence approach
- Bioavailabilty corrections- AVS and OC

Further discussion of the proposal by the WG-EF-EQS

Further research on metal binding to FeO, MnO... and its influence on ecotoxicity

Refined monitoring : including measurements of AVS, OC...

18

Possibility for integrated field assessment