

22/11/2013

VAMORAS – Reuse of filter cakes as raw materials?

Dr. ir. Liesbeth Horckmans

From AMORAS...

Port of Antwerp

- Annual dredged sediments 500,000 tonnes DM
- Traditional solutions (lagooning fields, underwater cells) exhausted
 - Need for sustainable solution.

AMORAS

Antwerp Mechanical Dewatering Recycling and Applications of Sediment

- Construction 2008-2011, operational since October 2011
 - 450,000 to 800,000 tonnes DM/year filter cakes
- Capacity of on-site storage facility 30 years what after?
- Reuse of filter cakes considered from the start of the project

... to VAMORA

Circa 500 kton DM filter cakes per year Continuous, homogenous, fine-grained material of good environmental quality

Valorisation of filter cakes as raw materials?

- Clay replacement in ceramics
 - expanded clay aggregates
 - bricks
- Filler in concrete
- Infrastructure works (dykes, roads, ...)

2011-2013

vision on technology

Characterization

Metals (mg/kg DM)	
Arsenic (As)	50 ± 9
Cadmium (Cd)	6 ± 1
Chromium (Cr)	140 ± 14
Copper (Cu)	82 ± 14
Mercury (Hg)	1.1 ± 0.2
Lead (Pb)	160 ± 67
Nickel (Ni)	38 ± 4
Zinc (Zn)	650 ± 137

Characterization

- Linked to natural sulphides in sediment
- Seasonal trend
- Potential issue for sulphur emissions/sulphate leaching

Characterization

- Linked to brackish water
- Seasonal trend (limited impact on filter cakes)
- Potential issue for chloride emissions/chloride leaching

Optimization – Drying

Natural drying?

- Slow
- Heterogeneous
- Labour intensive
- Large covered surface needed

Optimization – Drying

Thermal drying (filler)

- Drum dryer (500-600°C)
- Calibration/milling!
- Price estimate (high): ~50 EUR/ton filler

Direct mixing of lime/cement (infrastructure)?

Optimization – As leaching

- » As leaching (standard filter cakes) > Flemish threshold for reuse
- » As from natural origin (sulphides, glauconite): 50 ± 9 mg/kg DM
- » Test to determine influence on As leaching of
 - Composition of filter cakes
 - Type of coagulant (lime, lime + FeCl₃, PE)
 - Addition of Fe-rich sludge to immobilise As
 - Temperature (40°C, 600°C, 1000°C)

Optimization – As leaching

22/11/2013

22/11/2013

Industrial applications

- » Laboratory scale experiments
- » Industrial production trials
- » Pilot scale applications

- » Testing of technical and environmental quality
- » Market study to evaluate potential

Industrial applications – main results

- » Ceramics (expanded clay aggregates, bricks)
 - » 5- 10% clay replacement feasible
 - » Filter cakes can be used without preparation
 - » Further optimization experiments ongoing
 - Economic feasibility depends on additional costs

» Filler

- » Drying/milling very important!
- Increased w/c due to high water demand
- Further optimization of recipe ongoing
- » High preparation costs: aim for high value filler!

Main results industrial applications

» Infrastructure

- » Drying necessary best method to be determined
- » Technically feasible as supporting layer
- » Additional strength obtained by mixing with lime/cement

» Optimization needed for environmental quality

Conclusions

- » AMORAS process results in continuous stream of homogeneous, finegrained material of good environmental quality
 - Optimization needed for leaching of As, chloride, sulphate
- » Intermediary results for applications:
 - Expanded clay aggregates: 5-10% clay replacement feasible, no pre-treatment needed, economically feasible
 - » Bricks: 5-10% clay replacement feasible, no pre-treatment needed, additional maintenance and production costs
 - » Filler: high pre-treatment costs (drying, milling), additional research aimed at high value filler
 - Infrastructure: mixing with lime/cement needed for additional strength, drying necessary, further investigations into optimal mixing method

Thank you for your attention!

Questions?

More information:

www.amoras.be

www.mipvlaanderen.be/nl/webpage/99/vamoras.aspx

www.portofantwerp.com

Contacts:

Joris Dockx (aMT, project leader), <u>joris.dockx@mow.vlaanderen.be</u>
Liesbeth Horckmans (VITO, research leader), <u>liesbeth.horckmans@vito.be</u>
Kris De Craene (GHA, project coordinator), <u>kris.decraene@haven.antwerpen.be</u>

