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Bloaccumulatlon Models

Used to predict
concentrations in aquatic
organisms exposed to
sediment-associated
contaminants

Used to evaluate changes in
predicted organism
concentrations (and
resulting human health and
ecological risks) as a result of
different management
alternatives

Most, if not all, applications
based on static exposures
(e.g., SWAC, average, etc.)
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Characterizing Exposures

0 mg/kg outside
modeling domain

(66.

mg/kg in
sediment
within

modeling

Qomain /

External processing of static
exposures represented by one
value (average, SWAC, etc.)
Bioaccumulation models do not
represent fish behavior,
foraging strategy, life history,
habitat preferences

Either exposed or not — doesn’t
capture dynamics of fish
behavior

Don’t typically capture changes
over time

Doesn’t capture uncertainty
and variability
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Spatial Heterogeneity in Exposure




Motivation for
Spatially-Explicit Approach

e Spatial and temporal scales associated with ecological
receptor exposure
* Fish have localized movements
— Daily foraging strategies
— Preferential habitat and foraging areas
e Seasonal habits
— Migratory status

— May leave modeling grid for parts of the year
— Offshore movements



Draw Site Areas

FishRand Approach
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Sampling from a
population of fish
Movements and
foraging strategies
contribute to the
distribution of predicted
tissue concentrations
Takes advantage of GIS-
based sediment
concentrations
Probabilistic linkages
e Decision analytic
approaches
* Integration with
economic and other
data
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Importance of Uncertainty and Variability
to Predicted Risks from Trophic Transfer of PCBs
in Dredged Sediments

Katherine E. von Stackelberg,"* Dmitriy Burmistrov,' Donna J. Vorhees,' Todd S. Bridges,

and Igor Linkov*

Biomagnification of organochlorine and other persistent organic contaminants by higl
trophic level organisms represents one of the most significant sources of uncertainty a
variability in evaluating potential risks associated with disposal of dredged materials, While i
important to distinguish between population variability (e.g., true population heterogeneity
fish weight, and lipid content) and uncertainty (e measurement error), they can
operationally difficult to define separately in probabilistic estimates of human health 2
ecological risk. We propose a disaggregation of uncertain and variable parameters based
(1) availability of supporting data; (2) the specific management and regulatory context (int
case, of the US., Army Corps of Engineers . Environmental Protection Agency lie
approach to dredged material management); and (3) professional judgment and experience
conducting probabilistic risk as sments. We describe and quantitatively evaluate seve
sources of uncertainty and variability in estimating risk to human health from trophic trans
of polychlorinated h]phu_n\-ls (PCBs) using a case study of sediments obtained from the N
York-New Jersey Harbor and being evaluated for disposal at an open water off-shore dispo
site within the northeast region. The estimates of PCB concentrations in fish and dietary do
of PCBs to humans ingesting fish are expressed as distributions of values, of which |
arithmetic mean or mode represents a particular fractile. The distribution of risk value:
obtained using a food chain biomagnification model developed by Gobas"'* by specify
distributions for input parameters disaggregated 1o represent either uncertainty or variabili
Only those sources of uncertainty that could be quantified were included in the analy
Results for several different two-dimensional Latin Hypercube analyses are provided
evaluate the influence of the uncertain versus variable disaggregation of model parametc

The analysis suggests that variability in human exposure parameters is greater than |

uncertainty bounds on any particular fractile, given the described assumptions.

KEY WORDS: Biomagnification; probabilistic sk assessment (FRA); polychlorinated biphen
dredged ma rophie transfer; uncertainty and vanability
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The use of spatial modeling in an aquatic food web to estimate
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Abstract

This paper quantitatively evaluates interactions among foraging behavior, habitat preferences, site characteristics
and the spatial distribution of contaminants in estimating PCB exposure concentrations for winter flounder at a
hypothetical open water dredged material disposal site in the coastal waters of New York and New Jersey (NY-NI).
The models implemented in this study include a spatial submodel to account for spatial and temporal characteristics
of fish exposure and a probabilistic adaptation of the Gobas bioaccumulation model to account for temporal variation
in concentrations of polychlorinated biphenyls (PCBs) in sediment and water. We estimated the geographic distribution
of an offshore winter flounder subpopulation based on species biology. including such variables as foraging area.
habitat size, disposal site size and migration characteristics. We incorporated these variables together with an estimate
of differential attraction to a management site within a spatially explicit model to assess the range of expected PCB
exposures to a winter flounder population. The output of this modeling effort. flounder PCB tissue concentrations.
provides exposure point concentrations for estimates of human health risk through ingestion of locally caught flounder.
The risks obtained for the spatially non-explicit case are as much as one order of magnitude higher than those
obtained after incorporating spatial and temporal characteristics of winter flounder foraging and seasonal migration.
Incorporating spatial and temporal variables in food chain models can help support sediment management decisions
by providing a quantitative expression of the confidence in risk estimates. © 2002 Elsevier Science B.V. All rights
reserved.

Keywords: Bioaccumulation; PCBs; Exposure assessment; Spatial; Probabilistic




SERDP Demonstration Project

DEFINE MODELING AREA:

 Base map with GIS-based spatially-defined exposures

SPECIFY INPUTS:

e Simple food web (water column and benthic inverts, pumpkinseed, bluegill,
yellow perch, largemouth bass)

THREE MODEL RUNS:

e Inputs to all three runs identical except for sediment concentrations
e Deterministic (SWAC)
e Probabilistic (distribution but still averaged)
e Spatial (in this case, deterministic but spatial; could be distributions)

-

_;’Variability: Variable parameters sampled and fixed

| Spatial and Diet: Sample from diet within home range

ACDF (Cysn | t, variability, uncertainty)
—>
CDF (Cygp, | t, variability, uncertainty)
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Spatially-

Explicit
Observed |Deterministic|Probabilistic Model
Mean Case (mg/kg | (No Spatial) Results RPD RPD RPD Spatially-
Species (mg/kg ww) ww) (mg/kg ww) | (mg/kg ww) |Deterministic| Probabilistic| Explicit

Yellow Perch
PCB-052 0.016 0.037 0.155 0.015 78% 162%
PCB-153 0.289 0.156 0.191 0.281 -60% -41%
Cl-4 Tetrachlorobiphenyls 0.124 0.122 0.351 0.122 96%
Cl-5Pentachlorobiphenyls 0.247 0.328 0.53 0.323 28% 73%
Cl-6 Hexachlorobiphenyls 0.938 0.745 0.903 1.130 -23% 19%
Total PCBs 2.266 1.56 2.12 2.260 -37% -7%
Bluegill
PCB-052 0.008 0.016 0.079 0.006 69% 164%
PCB-153 0.072 0.049 0.043 0.086 -39% -51%
Cl-4 Tetrachlorobiphenyls 0.045 0.05 0.171 0.049 10% 116%
Cl-5Pentachlorobiphenyls 0.087 0.111 0.192 0.108 24% 75%
Cl-6 Hexachlorobiphenyls 0.240 0.239 0.283 0.362 16% 41%
Total PCBs 0.582 0.623 0.79 0.848 30% 37%
Largemouth Bass
PCB-052 0.023 0.054 0.231 0.021 81% 164%
PCB-153 0.348 0.161 0.198 0.276 -74% -55%
Cl-4 Tetrachlorobiphenyls 0.149 0.175 0.502 0.146 16% 109%
Cl-5 Pentachlorobiphenyls 0.321 0.379 0.622 0.331 16% 64%
Cl-6 Hexachlorobiphenyls 1.154 0.81 1.000 1.160 -35% -14%
Total PCBs 2.767 1.76 2.420 2.410 -44%

RPD = relative percent difference calculated as (predicted-observed)/average(predicted,observed)

values indicate lowest RPD;

values indicate within 50% of observed



Example Application and Linkage to
Decision Analytic Framework

Integrated Environmental Assessment and Management — Volume 9, Number 2—pp. 260-268
260 © 2013 SETAC

Decision Analytic Strategies for Integrating Ecosystem
Services and Risk Assessment

Katherine E von Stackelberg*
E Risk Sciences, LLP 12 Holton Street, Allston, Massachusetts, 02134, USA

(Submitted 22 June 2012; Returned for Revision 7 August 2012; Accepted 28 December 2012)

EDITOR’S NOTE

This paper is one of 8 articles generated from the SETAC Special Symposium: Ecosystem Services, from Policy to Practice
(15-16 February 2012, Brussels, Belgium). The symposium aimed to give a broad overview of the application of the ecosystem
services concept in environmental assessment and management, against the background of the implementation of the European
environmental policies such as the biodiversity agenda, agricultural policy, and the water framework directive.

ABSTRACT

Ecosystem services as a concept and guiding principle are enjoying wide popularity and endorsement from high-level policy
thinkers to industry as support for sustainability goals continue to grow. However, explicit incorporation of ecosystem services
into decision making still lacks practical implementation at more local scales and faces significant regulatory and technical
constraints. Risk assessment represents an example of a regulatory process for which guidance exists that makes it challenging
to incorporate ecosystem service endpoints. Technical constraints exist in the quantification of the relationships between
ecological functions and services and endpoints valued by humans, and the complexity of those interactions with respect to
bundling and stacking. In addition, ecosystem services, by their very definition, represent an anthropogenic construct with no
inherent ecological value, which, in practical terms, requires a far more inclusionary decision making process explicitly
incorporating a greater diversity of stakeholder values. Despite these constraints, it is possible, given a commitment to
sustainable decision making, to simplify the process based on strategic outcomes (e.g., identifying desired end-states in
general terms). Decision analytic techniques provide a mechanism for evaluating tradeoffs across key ecosystem services
valued by stakeholders and to develop criteria drawn from the entire spectrum of stakeholders in evaluating potential
alternatives. This article highlights several examples of ways in which ecosystem service endpoints can be incorporated into
the decision-making process. Integr Environ Assess Manag 2013;9:260-268. © 2013 SETAC
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Map

Evaluation of Remedial Alternatives
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Output Statistics from FR Link Directly
to Risk Assessment Model to Criteria

MEETFTEFENSL JTE S WEE P 1)

ai £ Model can generate different statistics
Statistics included in the report: of predicted tissue concentrations for
Central Tendency  Variability use in risk assessment model
Mean Stdewv
Median Yariance
Mode eV In this example, links directly to risk
Geom. Mean Geom. Stdev

model within a GIS-based decision
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Conclusions

Spatially-explicit bioaccumulation model provides
greater realism in how sediment exposures influence
predicted aquatic organism concentrations

Probabilistic framework provides more information
for decision makers and integration with
complementary analyses

Better evaluation of impact of management
alternatives
— Remove all “hot spots”

— Remove all sediments above some threshold — truncate
distributions

Decision analytic approaches allow transparent
evaluation of alternatives



Thank You!!

Katherine von Stackelberg
kvon@nekassociates.com
1.508.596.4209

FishRand was developed with funding from the
Army Corps of Engineers. Currently, the model is
available by request from Dr. von Stackelberg;
plans are underway to make it publicly available
via web download.
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