Spatially-explicit bioaccumulation modeling to support human health and ecological risk assessments in a decision analytic context

Katherine von Stackelberg, ScD NEK Associates LTD kvon@nekassociates.com

the second s	
FishRand-M	igratio
Probabilistic Fish Bioacc	umulation Mod
Current Model:	
Natick Site	
C:\Users\Kvon\Desktop\Fi	R inputs\Natick Tw
Calculation Status Incomplete	Strip Calcul
	didda.
	FishRand-M Probabilistic Fish Bioacc Current Model: Natick Site File: C:Users\Kvon\Desktop\Fi Calculation Status Incomplete

Bioaccumulation Models

- Used to predict concentrations in aquatic organisms exposed to sediment-associated contaminants
- Used to evaluate changes in predicted organism concentrations (and resulting human health and ecological risks) as a result of different management alternatives
- Most, if not all, applications based on static exposures (e.g., SWAC, average, etc.)

Office of Superfund Remediation and Technology Innovation

ediment Assessment and Monitoring Sheet (SAMS) #2

Understanding the Use of Models in Predicting the Effectiveness of Proposed Remedial Actions at Superfund Sediment Sites

Characterizing Exposures

0 mg/kg outside modeling domain

66.7 mg/kg in sediment within modeling domain

- External processing of static exposures represented by one value (average, SWAC, etc.)
- Bioaccumulation models do not represent fish behavior, foraging strategy, life history, habitat preferences
- Either exposed or not doesn't capture dynamics of fish behavior
- Don't typically capture changes over time
- Doesn't capture uncertainty and variability

ERDC TN-DOER-R17 August 2011 Bioaccumulation Models: State of the Application at Large Superfund Sites by Karl Gustavson, Katherine von Stackelberg, Igor Linkov, and Todd Bridges

Table D.4-1, cont. Input parameter probability distribution statistics and point estimate values

				DISTRIBUTION		
PARAMETER	SYMBOL	UNIT	VALUES"	Appli	cation of the Arno	t and Gobas (2004a) FWM to the LDW required the selection of
Mean temperature of water column water	т	*C	mean = 11.2 8E = 0.397	value	for 114 input par	ameters (including dietary fractions) Because the Arnot and
Dissolved oxygen concentration in water column water	Cox	mg/L.	mean = 7.93 SE = 0.203	normal	samples 1 m above bottom.	
TSS concentration in water column water	Cas	kg/L	mean = 5.8 × 10 ⁴ SE =8.8 × 10 ⁷	normal	Unpublished King County 2005 wat samples 1 m above bottom. Used T filter to be consistent with POC defi	ter data (Mickelson 2008) from ISS samples filtered with a 45-µm nition (> 45 µm).
Density of seawater	ōw	kg/L	1.03	point estimate	Value from Sverdrup et al. (1942). F	Point estimate assumed because
Concentration of total PCBs in sediment	Ca	µg/kg dw	mean = 380	point estimate	SWAC calculated using IDW on Oct samples between RM 0.0 and RM 5 surface sediment database.	tober 20, 2008, based on 1,264 5.25 from the LDW baseline
Sediment organic carbon	OC _{ent}	*	mean = 1.91 8E = 0.025	normal	owac calculated using Thessen based on 1,264 samples between baseline surface sediment databa Thiessen polygons to allow calcul	$C_{WP} = \frac{C_{WT}}{[1 + (\chi_{POC} \times D_{POC} \times \alpha_{EOC} \times K_{OW} + \chi_{EOC} \times D_{EOC} \times \alpha_{EOC} \times K_{OW})] \times 1,000} \qquad \qquad$
Chemical Parameters						k ₁ = E _W ×G _V /W ₈ Surface Water Metabolism
Log octanol-water partition coefficient for total PCBs	log K _{ow}	LAg	mean = 6.6 SE = 0.05	normal	Weighted average of log K _{cw} basi benthic invertebrate tissue. Log K _i and Connell (1988).	$ \begin{array}{c} E_{D} = (3.0 \times 10^{7} \times K_{OW} + 2.0)^{4} \end{array} \\ \hline \\$
Proportionality constant expressing the sorption capacity of NLOM for an organic chemical relative to that of octanol	β	unitiess	mean = 0.035 SE = 0.005 ^b	normal	Meen from Arnot and Gobes (200 reported by Arnot (2005).	$ \begin{array}{c} k_{0} = E_{D} \times G_{D} / W_{B} \\ \hline k_{0} \times \sum P_{i} \times C_{D, j} \\ \hline G_{0} = 0.022 \times W_{B}^{0.05} \times e^{(0.0+1)} \\ \hline W_{ater} \\ \hline k_{2} = \frac{Fish}{(3.0 \times 10^{-7} \times K_{cys} + (k_{i} \times m_{p} \times C_{wp}) + (k_{i} \times p_{p} \times C_{w}))} \\ \hline \end{array} \\ \begin{array}{c} Fish \\ \hline W_{B} \\ \hline (3.0 \times 10^{-7} \times K_{cys} + 2.0)^{-1} \\ \hline (3.0 \times 10^{-7} \times K_{cys} + 2.0)^{-1} \\ \hline \end{array} $
Proportionality constant expressing the sorption capacity of NLOC for an organic chemical relative to that of octanol	βoc	L/kg	0.35	point estimate	Value from Seth et al. (1999), as ($K_{BW} = \frac{v_{LB} \times K_{OW}}{\delta_L} + v_{NB} \times \beta \times K_{OW} + \frac{v_{WB}}{\delta_W}}$ $K_{GB} = \frac{v_{LB} \times K_{OW} + v_{NC} \times \beta \times K_{OW} + \frac{v_{WB}}{\delta_W}}{\frac{V_{LB} \times K_{OW} + v_{NB} \times \beta \times K_{OW} + \frac{v_{WB}}{\delta_W}}{\frac{V_{LB} \times K_{OW} + v_{NB} \times \beta \times K_{OW} + \frac{v_{WB}}{\delta_W}}}$
Rate constant for metabolic transformation of total PCBs	kas	dey ¹	0	point estimate	Value for kwassumed to be zero f	$\begin{array}{c} \textbf{Porewater} \\ \textbf{k}_{1} \times \textbf{m}_{P} \times \textbf{C}_{WD,P} \\ \hline \textbf{k}_{1} \times \textbf{k}_{1} \times \textbf{k}_{1} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{1} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{1} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times \textbf{k}_{2} \\ \hline \textbf{k}_{2} \times k$
Lower Duwamish Waterway Group FINAL LDW RI: Appendix D July 0, 2010 Page 23					LDW RI: Appendix D July 9, 2010 Pege 23	$\begin{bmatrix} \psi_{W} = \frac{1}{1.86^{+} (V_{CM})} \\ \hline \psi_{WD} = \frac{1}{C_{CM}} \\ \hline \psi_{W$
						$\begin{bmatrix} (1-\varepsilon_L) \times v_{LD} + (1-\varepsilon_N) \times v_{OCD} + (1-\varepsilon_N) \times v_{ND} + (1-\varepsilon_W) \times v_{ND} \end{bmatrix} \begin{bmatrix} v_{ND} \\ [(1-\varepsilon_L) \times v_{LD} + (1-\varepsilon_N) \times v_{OCD} + (1-\varepsilon_N) \times v_{ND} + (1-\varepsilon_W) \times v_{ND} \end{bmatrix}$

Spatial Heterogeneity in Exposure

Motivation for Spatially-Explicit Approach

- Spatial and temporal scales associated with ecological receptor exposure
- Fish have localized movements
 - Daily foraging strategies
 - Preferential habitat and foraging areas
- Seasonal habits
 - Migratory status
 - May leave modeling grid for parts of the year
 - Offshore movements

FishRand Approach

- Sampling from a population of fish
- Movements and foraging strategies contribute to the distribution of predicted tissue concentrations
- Takes advantage of GISbased sediment concentrations
- Probabilistic linkages
 - Decision analytic approaches
 - Integration with economic and other data

Importance of Uncertainty and Variability to Predicted Risks from Trophic Transfer of PCBs in Dredged Sediments

Katherine E. von Stackelberg,^{1*} Dmitriy Burmistrov,¹ Donna J. Vorhees,¹ Todd S. Bridges,² and Igor Linkov³

> Biomagnification of organochlorine and other persistent organic contaminants by high trophic level organisms represents one of the most significant sources of uncertainty a variability in evaluating potential risks associated with disposal of dredged materials. While i important to distinguish between population variability (e.g., true population heterogeneity fish weight, and lipid content) and uncertainty (e.g., measurement error), they can operationally difficult to define separately in probabilistic estimates of human health a ecological risk. We propose a disaggregation of uncertain and variable parameters based (1) availability of supporting data; (2) the specific management and regulatory context (in t case, of the U.S. Army Corps of Engineers/U.S. Environmental Protection Agency tier approach to dredged material management); and (3) professional judgment and experience conducting probabilistic risk assessments. We describe and quantitatively evaluate seve sources of uncertainty and variability in estimating risk to human health from trophic trans of polychlorinated biphenyls (PCBs) using a case study of sediments obtained from the N York-New Jersey Harbor and being evaluated for disposal at an open water off-shore dispo site within the northeast region. The estimates of PCB concentrations in fish and dietary do of PCBs to humans ingesting fish are expressed as distributions of values, of which arithmetic mean or mode represents a particular fractile. The distribution of risk value: obtained using a food chain biomagnification model developed by Gobas^(1,2) by specify distributions for input parameters disaggregated to represent either uncertainty or variabil Only those sources of uncertainty that could be quantified were included in the analy Results for several different two-dimensional Latin Hypercube analyses are provided evaluate the influence of the uncertain versus variable disaggregation of model paramete The analysis suggests that variability in human exposure parameters is greater than uncertainty bounds on any particular fractile, given the described assumptions.

> KEY WORDS: Biomagnification; probabilistic risk assessment (PRA); polychlorinated biphen dredged material; trophic transfer; uncertainty and variability

The Science of the Total Environment 288 (2002) 97-110

the Science of the Total Environment

www.elsevier.com/locate/scitotenv

The use of spatial modeling in an aquatic food web to estimate exposure and risk

Katherine von Stackelberg^{a,*}, Dmitriy Burmistrov^a, Igor Linkov^b, Jerome Cura^a, Todd S. Bridges^c

*Menzie-Cura & Associates, Inc. One Courthouse Lane, Suite Two, Chelmsford, MA 01824, USA *Arthur D. Little, Inc, Cambridge, MA, USA *United States Engineer Research and Development Center, Vicksburg, MS, USA

Received 8 June 2001; accepted 15 October 2001

Abstract

This paper quantitatively evaluates interactions among foraging behavior, habitat preferences, site characteristics and the spatial distribution of contaminants in estimating PCB exposure concentrations for winter flounder at a hypothetical open water dredged material disposal site in the coastal waters of New York and New Jersey (NY-NJ). The models implemented in this study include a spatial submodel to account for spatial and temporal characteristics of fish exposure and a probabilistic adaptation of the Gobas bioaccumulation model to account for temporal variation in concentrations of polychlorinated biphenyls (PCBs) in sediment and water. We estimated the geographic distribution of an offshore winter flounder subpopulation based on species biology, including such variables as foraging area, habitat size, disposal site size and migration characteristics. We incorporated these variables together with an estimate of differential attraction to a management site within a spatially explicit model to assess the range of expected PCB exposures to a winter flounder population. The output of this modeling effort, flounder PCB tissue concentrations, provides exposure point concentrations for estimates of human health risk through ingestion of locally caught flounder. The risks obtained for the spatially non-explicit case are as much as one order of magnitude higher than those obtained after incorporating spatial and temporal characteristics of winter flounder foraging and seasonal migration. Incorporating spatial and temporal variables in food chain models can help support sediment management decisions by providing a quantitative expression of the confidence in risk estimates. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Bioaccumulation; PCBs; Exposure assessment; Spatial; Probabilistic

SERDP Demonstration Project

DEFINE MODELING AREA:

- Base map with GIS-based spatially-defined exposures SPECIFY INPUTS:
- Simple food web (water column and benthic inverts, pumpkinseed, bluegill, yellow perch, largemouth bass)

THREE MODEL RUNS:

- Inputs to all three runs identical except for sediment concentrations
 - Deterministic (SWAC)
 - Probabilistic (distribution but still averaged)
 - Spatial (in this case, deterministic but spatial; could be distributions)

					PUT INT AND SEAL	
A	Units	Distribution type	Parameters	Source	1.0	No. I all the second
						MANY PARTY THE SHOP
iter column invertebrates lipid content	- 54	triangular (min, mode, max)	0.5, 1.2, 3	Assumed	Location Depth (in) PCB Conc. (mg/kg)	
ment invertebrates lipid	%	triangular (min, mode, max)	1.8, 3.1, 4.7	KABAM v 1.0 documentation	SE-122A 0-2 22	A CONTRACT OF A
kinseed					SE-122B 12.5-14.5 0.0027	
aht.	8	triangular (min, mode, max)	34, 42, 47	FS Report, Table 3-2, 2007 data	35-122C 25-27 0.000	
d	5	triangular (min, mode, max)	1.2.2.9	FS Report, Table 3-2, 2007 data		oncertainty. Oncertain parameters sampled and fixed
ugil .						
ehd .		triangular (min. mode, max)	70.98.135	ICF International 2008	Location Dorth (in) PCR Conc (make)	
		triangular (min. mode. maa)	0.08.0.61.2.8	ICE International 2008	Cotation Depart (in) PCD Conc. (ingrkg)	
w Perch		a second constrained			SE-121A 0-2 0.73	
the second se		triangular (min mode mail	50 134 175	ICE International 2008	SE-121B 15-17 8.9	
	-	prinemited and mande man?	01.042.11	PE International Ways	SE-121C 30-32 0.013	
amouth Base		a sedana trant most, mant	0.0,0759,010	The state of the state	A DECEMBER OF A	
cht		normal (u. e. min. march	536 (186) 271,065	105 International 2008	1101 X 101	
	-	compatibulation and an and and and and and and and and	0.83 (0.54) 0.05 4.43	171 International 2008	at an at an at a	Variability: Variable parameters sampled and fixed
-		rionina (p. o, min, max)	0.000 (0.04) 0.000 4.40	107 1101 1010 101 2000		i i i i i i i i i i i i i i i i i i i
¥					SE-102	
^ w	_	1	1	False and Ballida 1997, Manuar et	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 S. (m. 1993)
		and the second second		Lister and berste 1996; Harsen et	\$E-103	
35	10/10	normal (µ, d, min, max)	6.6 (0.7) 4.1-9.1	al. 1999; Hawker & Connell 1988	Location Depth (in) PCB Conc. (mg/kg)	
				Eister and Betisle 1996; Hansen et	SE-123A 0-2 1.9	Location Dept
194	rg/rg	point estimate	5.93	31. 1999; Hawker & Connet 1988	SE-1238 8-10 0.15 22 SE-10	SE-125A 0
				Eisler and Belisle 1996; Hansen et	SE-122C 16-18 0.0023	SE-1258 12
155	kg/kg	point estimate	7.05	al. 1999; Hawker & Connell 1988		- Spatial and Diet: Sample from diet within home range
				Eisler and Belisle 1996; Hansen et		sense 235 Opatial and Diet. Gample norm diet within norme range
nolog 4	kg/kg	triangular (min, mode, max)	5.45, 5.96, 6.43	al. 1999; Hawker & Connell 1988		
				Eisler and Belisle 1996; Hansen et	A 2.6 A 2.6	
nolog 5	kg/kg	triangular (min, mode, max)	5.72, 6.39, 7.52	al. 1999; Hawker & Connell 1988		Location Dept
				Eisler and Belisle 1996; Hansen et		SE-124A 0
molog 6	kg/kg	triangular (min, mode, max)	6.24, 6.8, 7.31	al. 1999; Hawker & Connell 1988		SE-1248 10.5
					SECHARD SECHARD SECHARD	SE-124C 21
al Organic Carbon	%	normal (µ, d, min, max)	1.7 (0.67) 0.11-3.8	ICF International 2008	2/25	
					Location Depth (in) PCB Conc. (mg/kg)	
				Assumed (Average based on FS	SE-126A 0-2 12/14	CDF (C _e , 1t variability uncertainty)
nperature	degC	triangular (min, mode, max)	8, 13, 18	Table 3-1)	SE-126B 10.5 - 12.5 0,00089	(Ofish I t, Valiability, anoortainty)
ter Concentration (nell)		1	1		SE-126C 21-23 0.00030 SE-108 SE-108	
				nominal value (FS Table 3-1 states	100	
-Bs	640	point estimate	1.0	2073		7
	e//c		10	nominal value (ES Table 3.1 states	Leasting Death (in) DCB Care (make)	
857	and i	point estimate	0.01	2003	Location Leptin (in) PCB conc. (ing/kg)	
***	- agre	Prese distancies.	3.01	acceleration by US Table 3.1 cluster	SE-127A 0-2 2.7	CDE (C t variability uncertainty)
		and a strength		1000 miles ware prof 18080 3-1 108005	SE-127B 9 - 11 ND	(Of (Ofish I, Variability, uncertainty)
2422	mp/L	point excitate	0.01	V)	SE-127C 18-20 0.00024	
				nominal value (FS Table 3-1 states		
nolog 4	ng/L	point estimate	0.01	10')		
				nominal value (PS Table 3-1 states		
molog 5	npl	point estimate	0.01	10.1	SE-114	
				nominal value (FS Table 3-1 states		
deside a fil		involved and language	1 0.01	12021		

				Spatially-					
				Explicit					
	Observed	Deterministic	Probabilistic	Model					
	Mean	Case (mg/kg	(No Spatial)	Results	RPD	RPD	RPD Spatially-		
Species	(mg/kg ww)	ww)	(mg/kg ww)	(mg/kg ww)	Deterministic	Probabilistic	Explicit		
Yellow Perch	Yellow Perch								
PCB-052	0.016	0.037	0.155	0.015	78%	162%	-7%		
PCB-153	0.289	0.156	0.191	0.281	-60%	-41%	-3%		
Cl-4 Tetrachlorobiphenyls	0.124	0.122	0.351	0.122	-1%	96%	-1%		
Cl-5 Pentachlorobiphenyls	0.247	0.328	0.53	0.323	28%	73%	27%		
Cl-6 Hexachlorobiphenyls	0.938	0.745	0.903	1.130	-23%	-4%	19%		
Total PCBs	2.266	1.56	2.12	2.260	-37%	-7%	0%		
Bluegill									
PCB-052	0.008	0.016	0.079	0.006	69%	164%	-21%		
PCB-153	0.072	0.049	0.043	0.086	-39%	-51%	17%		
Cl-4 Tetrachlorobiphenyls	0.045	0.05	0.171	0.049	10%	116%	8%		
Cl-5 Pentachlorobiphenyls	0.087	0.111	0.192	0.108	24%	75%	22%		
Cl-6 Hexachlorobiphenyls	0.240	0.239	0.283	0.362	0%	16%	41%		
Total PCBs	0.582	0.623	0.79	0.848	7%	30%	37%		
Largemouth Bass									
PCB-052	0.023	0.054	0.231	0.021	81%	164%	-8%		
PCB-153	0.348	0.161	0.198	0.276	-74%	-55%	-23%		
Cl-4 Tetrachlorobiphenyls	0.149	0.175	0.502	0.146	16%	109%	-2%		
Cl-5 Pentachlorobiphenyls	0.321	0.379	0.622	0.331	16%	64%	3%		
Cl-6 Hexachlorobiphenyls	1.154	0.81	1.000	1.160	-35%	-14%	1%		
Total PCBs	2.767	1.76	2.420	2.410	-44%	-13%	-14%		
RPD = relative percent difference calculated as (predicted-observed)/average(predicted,observed)									
green values indicate lowest RPD; blue values indicate within 50% of observed									

Example Application and Linkage to Decision Analytic Framework

Integrated Environmental Assessment and Management — Volume 9, Number 2—pp. 260–268 © 2013 SETAC

Decision Analytic Strategies for Integrating Ecosystem Services and Risk Assessment

Katherine E von Stackelberg* E Risk Sciences, LLP, 12 Holton Street, Allston, Massachusetts, 02134, USA

(Submitted 22 June 2012; Returned for Revision 7 August 2012; Accepted 28 December 2012)

EDITOR'S NOTE

260

This paper is one of 8 articles generated from the SETAC Special Symposium: Ecosystem Services, from Policy to Practice (15-16 February 2012, Brussels, Belgium). The symposium aimed to give a broad overview of the application of the ecosystem services concept in environmental assessment and management, against the background of the implementation of the European environmental policies such as the biodiversity agenda, agricultural policy, and the water framework directive.

ABSTRACT

Ecosystem services as a concept and guiding principle are enjoying wide popularity and endorsement from high-level policy thinkers to industry as support for sustainability goals continue to grow. However, explicit incorporation of ecosystem services into decision making still lacks practical implementation at more local scales and faces significant regulatory and technical constraints. Risk assessment represents an example of a regulatory process for which guidance exists that makes it challenging to incorporate ecosystem service endpoints. Technical constraints exist in the quantification of the relationships between ecological functions and services and endpoints valued by humans, and the complexity of those interactions with respect to bundling and stacking. In addition, ecosystem services, by their very definition, represent an anthropogenic construct with no inherent ecological value, which, in practical terms, requires a far more inclusionary decision making process explicitly incorporating a greater diversity of stakeholder values. Despite these constraints, it is possible, given a commitment to sustainable decision making, to simplify the process based on strategic outcomes (e.g., identifying desired end-states in general terms). Decision analytic techniques provide a mechanism for evaluating tradeoffs across key ecosystem services valued by stakeholders and to develop criteria drawn from the entire spectrum of stakeholders in evaluating potential alternatives. This article highlights several examples of ways in which ecosystem service endpoints can be incorporated into the decision-making process. Integr Environ Assess Manag 2013;9:260–268. © 2013 SETAC

Keywords: Ecosystem services Decision analysis MCDA Influence diagrams Sustainability

Evaluation of Remedial Alternatives

Output Statistics from FR Link Directly to Risk Assessment Model to Criteria

data is now com-	date:			×				
Statistics included in the report:								
Central Tendency Mean Median Mode Geom. Mean Group statistics	Variabili Stdev Variat CV Geom	ty nce 1. Stdev e <i>intervals:</i>						
# PERIOD BEG	INNING	PERIOD ENDI	NG					
1								
2								
3								
4								
5								
6				+				
All Periods Clear All Full tables:								
Include Percentiles of Wet Weight Concentration for Food Items								
Include Percentiles of Lipid Normalized Concentration for Food Items								
Include Percentiles of Wet Weight Concentration for Fish								
Include Percentiles of Lipid Normalized Concentration for Fish								
Report Inputs?			🗸 ок	X Cancel				

Model can generate different statistics of predicted tissue concentrations for use in risk assessment model

In this example, links directly to risk model within a GIS-based decision analytic framework

Conclusions

- Spatially-explicit bioaccumulation model provides greater realism in how sediment exposures influence predicted aquatic organism concentrations
- Probabilistic framework provides more information for decision makers and integration with complementary analyses
- Better evaluation of impact of management alternatives
 - Remove all "hot spots"
 - Remove all sediments above some threshold truncate distributions
- Decision analytic approaches allow transparent evaluation of alternatives

Thank You!!

Katherine von Stackelberg kvon@nekassociates.com 1.508.596.4209

Acknowledgments

FishRand was developed with funding from the Army Corps of Engineers. Currently, the model is available by request from Dr. von Stackelberg; plans are underway to make it publicly available via web download.