Modelling and numerical aspects of fluid-saturated granular materials: application to shear and chute flows.

C. Varsakelis & M. V. Papalexandris

Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, B-1348, Louvain la Neuve, Belgium

07 December 2012

8th International SedNet conference, 6-9 November 2013, Lisbon, Portugal

Physical assumptions

We consider a saturated mixture of an isotropic granular material and a simple fluid.

- i) Starting point: a continuum model for granular mixtures. (M.V. Papalexandris (2004), *J. Fluid. Mech.*, **517**).
 - Each phase is treated as an open thermodynamic system that interacts with the other one.
- ii) Low-Mach number approximation.(C. Varsakelis, M.V. Papalexandris (2011), *J. Fluid. Mech.*, 669).
- iii) For constant densities the low-Mach number equations reduce to...

Governing equations for constant density flows I

Granular phase

$$\begin{aligned} \nabla \cdot \boldsymbol{u}_{s} &= 0, \\ \rho_{s} \phi_{s} \frac{\mathrm{d} \boldsymbol{u}_{s}}{\mathrm{d} t_{s}} + \nabla (\boldsymbol{p}_{s} \phi_{s}) &= \frac{1}{Re} \nabla \cdot (\phi_{s} \, \mu_{s} \, \boldsymbol{V}_{s}^{v}) - \nabla \cdot (\boldsymbol{\Gamma}_{s} \nabla \phi_{s} \otimes \nabla \phi_{s}) \\ &+ p_{f} \nabla \phi_{s} + \delta (\boldsymbol{u}_{f} - \boldsymbol{u}_{s}) + \rho_{s} \phi_{s} \mathbf{g}. \end{aligned}$$

Fluid phase

$$\nabla \cdot ((\boldsymbol{u}_{s} - \boldsymbol{u}_{f})\phi_{f}) = 0,$$

$$\rho_{f}\phi_{f}\frac{\mathrm{d}\boldsymbol{u}_{f}}{\mathrm{d}t_{f}} + \nabla \boldsymbol{p}_{f}\phi_{f} = \frac{1}{Re}\nabla \cdot (\phi_{f}\mu_{f} \boldsymbol{V}_{f}^{\boldsymbol{v}}) - \boldsymbol{p}_{f}\nabla\phi_{s} - \delta(\boldsymbol{u}_{f} - \boldsymbol{u}_{s}) + \rho_{f}\phi_{f}\boldsymbol{g}.$$

Compaction equation for the solid volume fraction:

$$\frac{\mathrm{d}\phi_{s}}{\mathrm{d}t_{s}} = \mathbf{0}.$$

Governing equations for constant density flows II

- σ = ∇ · (Γ_s∇φ_s ⊗ ∇φ_s): configuration stress tensor; shear stresses at zero shear rates.
- *p_f*∇*φ_s* + δ(*u_f* − *u_s*) models momentum exchanges between the two phases. *p_f*∇*φ_s* is a non-conservative product.
- δ : interphasial drag coefficient.

The numerical algorithm I

Prediction stage

- i) Integrate the compaction equation for φ_s with the Corner Transport Upwind scheme.
 (P. Colella, (1990), *J. Comput. Phys.* 87).
- ii) Check for interfaces and perform a regularization for ϕ_s in the vicinity of the interface points.

iii) Granular phase

- (a) Momentum equation: time integration with Adams–Bashforth scheme (Crank-Nicolson for the viscous fluxes).
- (b) Projection method for the pressure p_s .
- (c) A Poisson equation is solved at each step.

The numerical algorithm II

iv) Fluid phase

- (a) Momentum equation: time integration with Adams Bashforth scheme.
- (b) Projection method for the pressure p_f .
- (c) A second-order elliptic PDE is solved at each step.

Corrector stage

The flow-chart of the correction stage is similar to that of the prediction stage.

Sand-water mixture: physical parameters

Granular material (sand)

•
$$\rho_s = 2200 \ kg/m^3$$
.

• $\Gamma_s = k_2 \rho_s \phi_s$, $k_2 = 4 \times 10^{-8} m^4/s^2$. (S.L. Passman et al., (1986), *J. Rheol.*, **30**).

•
$$\mu_s = \overline{\mu}_s \frac{\phi_s^2}{(1-\phi_s)^2}, \qquad \overline{\mu}_s = 723 \text{ kg/ms.}$$

(S.B. Savage, (1979), *J. Fluid. Mech.*, **92**).

Interstitial fluid (water)

•
$$\rho_f = 1000 \ kg/m^3$$
.

•
$$\mu_f = 1 \times 10^{-3} \ kg/ms$$
.

Shear flow for water-sand mixture

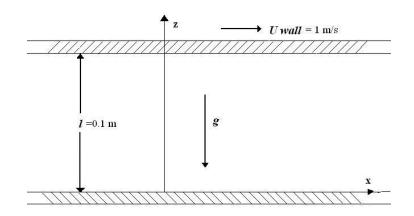


Figure : Geometry of simple shear flow.

Initial configuration of the mixture

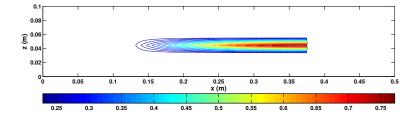


Figure : A granular bulb of high-particle concentration is placed between the plates and the rest of the domain is filled with a dilute water-sand mixture. Initially, the mixture is at rest.

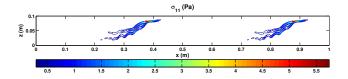
Volume fraction evolution without gravity

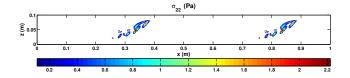
Figure : Evolution of ϕ_s , time interval 0 – 13 *s*.

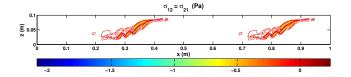
Volume fraction evolution with gravity

Figure : Evolution of ϕ_s , time interval 0 – 3.5 *s*.

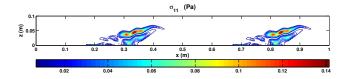
Configuration stresses: t = 0.5 s

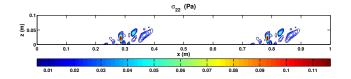


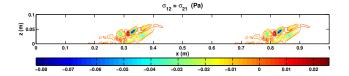




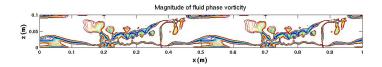
Configuration stresses: t = 3.5 s

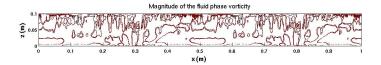






Vorticity of the fluid phase





- Gravity driven flow of a fluid-saturated granular layer down an inclined plane.
- Mixture of water with beach sand.
- Angle of inclination: 30°.
- Flow susceptible to Kapitza-type instability: initial condition chosen so as to trigger instability.

Volume fraction evolution

Figure : Evolution of ϕ_s , time interval 0 – 2.5 *s*.

Thank you!