Sustainable sediment management in a 'rigid' river basin, a port's perspective

Eric de Deckere, Johan Van Cleemput, Stefaan Ides, Yves Plancke, Agnes Heylen, Kris De Craene

Ports in a 'rigid' river basin

KLIWAS

Nilson et al. (2011)

What if the focus is only on the nautical function?

- Upstream:
 - Increasing low water and peak discharges
- In the port:
 - Accumulation of sediments and contaminants in the port area
 - A waterbody with a poor ecological status
- Downstream
 - Increasing tidal range

Ferne Zukunft" (2071-2100, A1B: 18 Läufe , alle SRES: 23 Läufe)

9 10 11

MQ increase in Winter

2 3 4 5

Kontollperiode (1961-1990, 22 Läufe)

Vittle

1000 500

Tidal range in the Elbe since 1870 (source: tidetoolbox)

12

Port of Antwerp

A rigid system with a lot of 'dynamic' functions?

Functions such as:

- -Water retention
- -Sediment retention
- -Habitat
- -Biodiversity
- -Savety
- -Etc.

Changes in sediment quality in the port

Sources of contaminants

<u>Significant sources</u> for PAHs	EIW	acenafteen	acenaftyleen	antraceen	benzo[a]anthracee	benzo[a]pyreen	benzo[b]fluoranth	benzo[g,h,i]peryle	benzo[k]fluoranth	chryseen	dibenzo[a,h]anthr	fenantreen	fluorantheen	Fluoreen	indeno[1,2,3-	naftaleen	pyreen	PAK16
Aumospheric deposition on land and water		0	0	30	50	70	74	65	74	63	40	38	72	210	74	0	53	46
Chemical industry		5	37	14	2	6	5	4	3	3	3	3	5	9	3	8	5	7
households	VMM	7	5	1	1	2	4	1	2	2	18	3	7	5	1	5	2	4
Production in the refineries																		
····		13	5	17	36	13	3	14	4	18	12	20	3	25	2	3	28	14
Coating of barges		7	5	6	4	4	4	2	4	2	19	1	1	5	18	14	2	5
Oil spills	spills		41	20	1	1	0	0	0	1	1	22	4	36	0	43	2	14
Corrosion of constructions in the water	IGNA	2	1	3	0	0	0	0	0	0	0	5	0	5	0	20	0	3
Road traffic: tyre wear		2	3	5	3	3	8	9	11	10	5	2	6	1	1	2	5	5
Tot	aal (kg)	7,6	12	6,7	14	12	13	13	5,7	17	2,9	30	26	11	10	23	29	234

Sources of mineral oil

(including port related traffic and second hand car storage)

Do the sources explain the increase in the sediment? Supposing:

- 1 m³ sediment = 200 kg d.w

- All emission remains in the surface 10 cm of the sediment

=> 10 kg/ha/y => increase of 50 mg/kg d.w.

Average concentration increased with 40 mg/kg d.w. in the period 2002-2010

Netto emissies minerale olie in kg/ha - oliecalamiteiten

Risk assessment of polluted sediments with regards to the ecological status

Sediments of 14 locations exposed to different trophic levels

	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	L1	L2	L3
algae 72h * (only 45%)														
daphnia acute 48h														
daphnia acute 96h														
daphnia prolonged 7d														
snail 28d														
PhytoTox LS 3d														
PhytoTox SA 3d														
Phytotox SS 3d														
OstracodTox 6d														
Myriophyllum 10d														

inhibition stim 0-20 20-40 40-60 60-80 80-100

Does the risk increase due to resuspension?

Simulation of resuspension due to dredging and navigation in laboratory conditions

Larger volume 1:20 ratio

- 500 ml sediment to 10L of water (distilled or same salinity), mixing by aeration

Resuspension monitoring

Turbidity before, during and after dredging

Frequentieverdeling: Voor - tijdens na baggeren Locatie P4: SN596

100.00

Integrated estuarine management

O TIDE Approach

ECONOMY

See also presentation of K. Wolfstein

Table 1-1. List of the 17 TIDE managed realignment measures with chosen basic information.

TIDE				Year of	Size		Zona (in Ti	ition ² DE-km	1)			
nr.	Estuary	Measure name	Code	impl.	(ha)	Cat.1	F	0	M	Р		
1	Elbe	Spadenlander Busch/Kreetsand	E-Sp.B.	2012	47	BH	30					
7	Elbe	Realignment Wrauster Bogen	E-Wr.B.	1991	2,2	В	18					
8	Elbe	Compensation measure Hahnöfer Sand	E-Hahn.S.	2002	63	В	57					
9	Elbe	Spadenlander Spitze	E-Sp.Sp.	2002	8	В	32					
13	Scheldt	Lippenbroek FCA-CRT	S-Lip.	2006	10	BH	38					
15	Scheldt	Ketenisse wetland	S-Ket.	2003	30	В			92			
16	Scheldt	Paddebeek wetland	S-Pad.	2003	1,6	В	18					
17	Scheldt	Paardenschor wetland	S-Paard.	2004	12	В			100			
18	Scheldt	Heusden LO wetland	S-Heusd.	2006	10	В	0					
24	Weser	Tegeler Plate – Development of tidally influenced brackish	W-Tegl.P.	1997	210	В		58				
		water habitats										
25	Weser	Shallow water area Rönnebecker Sand	W-Ronn.S.	2002	34	В	32					
26	Weser	Tidal habitat Vorder- und Hinterwerder	W-VorHin	1997	27	В	12					
27	Weser	Shallow water zone Kleinensieler Plate	W-KI.P.	2000	60	В		57				
28	Weser	Cappel-Süder-Neufeld	W-Cap.S.N.	2002	27	В				90		
30	Humber	Alkborough Managed Realignment and flood storage:	H-Alk.	2006	440	BH			60			
		Creation of ~440 a of intertidal habitat										
31	Humber	Paull Holme Strays Managed Realignment: creation of ~80	H-PHS	2003	80	В				95		
		ha of intertidal habitat										
33	Humber	Creation of ~13 ha of intertidal habitat at Chowder Ness	H-Ch.N.	2006	15	В			73			
1)	¹⁾ Concern Dialage (and an (D) hydrology (no state and the state of history (and any intervention of history (10))											

*' Category: Biology/ecology (B), hydrology/morphology (H), combination of biology/ecology with hydrology/morphology (HB)

²⁾ Zonation: freshwater zone (F), Oligonaline zone (O), mesonaline zone (M), and polyhaline zone (P) [21]

=> Manual for the evaluation of management practices on the ecosystem services in estuaries

Strategic morphological management

- Maintaining the multiple channel system locally

 creating zone in outer bend of the Middelgat channel with large ecological potential

- restore some of the morphological connections

- working with natural evolution

Positive impact on ecological and nautical functioning and on safety Alternative 2: Improving the Geul van de Molenplaat connection

Figure 26: Reach Baarland-Baalhoek: proposal improving Geul van de Molenplaat connection. Schematic distribution of ebb flow (green) and flood flow (yellow). Source aerial picture: Google Maps

Integrated vision for the coastal area: Vlakte van de Raan

A vision for protection of the coast line against the impact of climate change, eg. sea level rise, increased wave height etc.

Source: Ccaspar project

Integrated vision for the coastal area: Vlakte van de Raan

Shorter navigation route / protection of estuarine and inland navigation

Protection of the Belgium coastline

Reuse of dredged material / sand engine

Development of shallow water area and prevention of erosion of the Dutch coastline

Energiedissipation for the Westerschelde / reducing water levels during storm tide

Positive impact on ecological and nautical functioning and on safety

Source: Ccaspar project

conclusion

Today sediment management by the ports is not only focusing on the accessibility of the largest containerships

It is more and more an integrated management keeping in mind the ecological functioning, safety and nautical purposes

