

The relevance of sediments in eutrophic systems: a comparison of two European coastal lagoons (Óbidos and Lesina)

Carlos Vale^{1,3}, Patrícia Pereira¹, M. João Botelho¹, Elisabetta Ballarini² and Athanasios T. Vafeidis²

¹ Portuguese Institute for the Sea and Atmosphere, Av. Brasília, Lisbon, Portugal

- ² Institute of Geography, Christian-Albrechts University Kiel, Kiel, Germany
- ³ Interdisciplinary Center of Marine and Environmental Research, CIIMAR, Porto, Portugal

8th International SedNet conference, 6-9 November 2013, Lisbon, Portugal

Talking points

- Coastal lagoons
- Eutrophication
- Human pressures *versus* natural evolution
- Nutrients dynamics
- Final Remarks

ARCH

Coastal lagoons: current and future problems

Climate changes: accentuation of current problems?

Inlet channel: vulnerable to wind storms

Pulse input of nutrients: runoff

Eutrophication

- **Eutrophication** is the most worldwide problem in transitional and coastal waters resulted from human pressures
- Human-induced eutrophication is a Descriptor of Good Environmental Status of Marine Strategy Framework Directive (MSFD)
- **Eutrophication** is a process driven by the enrichment of water by **nutrients**, especially compounds of nitrogen and phosphorus, leading to:
 - increased growth, primary production and biomass of algae;
 - changes in the **balance** of organisms;
 - water quality degradation.
- Consequences are undesirable if they appreciably degrade
 ecosystem health and biodiversity;
 - sustainable provision of **goods** and **services**.

Two case studies: Óbidos lagoon and Lesina lagoon

Lesina: Italy, southern Adriatic coast, Med

Óbidos: Portugal, Atlantic coast

Morphologies of Óbidos and Lesina similarities and differences

	Óbidos Lagoon	Lesina Lagoon
Location	West Portugal	Italy, Adriatic coast
Depth	< 3.5m	< 1.5m
Freshwater inputs	< 1m³/s	12 m ³ /s (river and canals)
Tidal regime	mesotidal (3m)	microtidal (<0.2m)
Connection to sea Residence time	1 narrow inlet 1-22 days	2 narrow inlets 70-100 days

Constraints of Lesina and Óbidos: similarities and differences

	Óbidos Lagoon	Lesina Lagoon	
Major constrains Macroalgae cover Sediments	Eutrophic conditions Yes (eg. <i>Ulva</i> spp) Sand, mud in upper area	Dystrophic crises Yes (several species) Sand, mud spots	
Human activities	Clam harvesting	Fishing Aquaculture (on land)	
	Bathing waters, tourism and leisure	Bathing waters, tourism and leisure	
	Agriculture	Agriculture	

Sediment composition:

fine particles: red hotspots and height of bars

Estimation of Pressures/Impacts

Pressures/Impacts	Lesina lagoon*	Óbidos lagoon
Non-point contamination sources		
 diffuse agriculture impacts 	2	1
 freshwater inputs 	2	1
Point-contamination sources		
 domestic discharge 	2	1
 industrial discharges 	2	0
Dredging	0	1
Fisheries		
• fin-fisheries	1	1
 shell-fisheries 	1	2
Tourism	1	1
Total pressure	11	8
Average of pressure scores	1.6	1.0

Scale (0: absent; 1: low; 2: medium; 3: high)

* L. Roselli et al./ Estuarine, Coastal and Shelf Science 117 (2013) 29-36

Nutrient concentrations (mean cosd)

Phosphate (uM)

Nitrogen: Seasonality reflects inputs versus consumption (Lesina and Obidos)

Silicate: Higher values in Lesina and evidence of markedly external input in winter

Phosphate: Internal input in summer at Óbidos exceeds largely consumption

All nutrients: Elevated spatial variation in two seasons (Lesina and Óbidos)

Distribution of nitrate concentration in water column

Lesina: concentration isolines evidence localised discharges

September 2009

Óbidos: elevated bars in upper areas evidence agriculture diffuse sources

Distribution of phosphate concentration in water column

Lesina: concentration isolines evidence localised discharges

September 2009

Óbidos: elevated bars in upper areas evidence agriculture diffuse sources

Sediments as internal source of phosphorus under low oxygenation conditions

• If **biogeochemical** cycles are dominated by internal processes, **sediments** emerge as the major compartment

The meaning of nutrient composition

Ratio N:P

Redfield ratio

(optimum diet for algae)

Ratio Nitrogen: Phosphorus

Lesina:

- Ratio N/P >>16 means excess of N (particularly in winter)
- External inputs of N had little effect on production (except in summer)

Óbidos:

- Ratio N/P similar to Redfield value
- Low ratio in summer means regeneration of phosphate in sediments

Schematic representation of Lesina and Óbidos: vulnerabilities

Final Remarks (measures preventing eutrophication)

Actions in Lesina Lagoon Area

- Reduction of localised domestic and urban discharges (on progress)
- Better practices in agriculture and aquaculture
- Maintenance of vegetation in channels

Actions in Óbidos lagoon:

- Improve water circulation preventing low oxygenation in upper areas (dredging channels)
- Maintain sea-lagoon water exchanges
 - Options: stabilise inlet channel and frequent dredging?

Thank you for listening

20-20-

ARCH

58-13 -

