Are polluted sediments a source of contaminants for the water column?

Bataillard P., Bru K., Bizi M., Guézennec A.-G., Gaboriau H., Zebracki M. and Alary C.
Context

> Many aquatic ecosystems may be threatened by a possible remobilisation of pollutants accumulated in sediments.

> Any disruptive event of water/sediment equilibrium may induce a contaminant release in the water column.

> Re-deposition following re-suspension of initially anoxic sediment in oxic water is then a potential episode of increasing mobility of pollutants.
Objective

> A laboratory experiment was performed to understand the sediment ability to release metals in solution during re-deposition following re-suspension in oxic condition.

> Special care was given to the kinetics of the phenomena involved by coupling physical and chemical mechanisms.
Material: Sediment characteristics

Material originating from the Scarpe river in the North of France

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3357</td>
<td></td>
</tr>
<tr>
<td></td>
<td>676</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>
Material: *Sediment characteristics*

semi-quantitative mineralogy:
- Quartz ~ 40%, Calcite ~ 15%, Microline, Plagioclase and clay;

 with:
 - Interstratified smectite/illite ~ 47%;
 - Kaolinite ~ 30%;
 - Illite and/or mica ~ 20%;
 - Chlorite ~ 3%.

Particle size distribution:

- \(d_{10} = 7.3 \mu m\)
- \(d_{50} = 22.2 \mu m\)
- \(d_{90} = 552.4 \mu m\)
- \(d_mL = 147.6 \mu m\)
Method: *Experimental devices*

> overview of column set and sampling operation

At each sampling time, 3 heights were collected and analysed:
- 2 cm under the air/water interface
- At the middle of the water column
- 2 cm above the sediment/water interface

Experimental devices
- **Sampling syringe**
- **Septum**
- **pH, Eh**
- **O₂**
- **Electrodes**
Method: *Experimental devices*

> overview of column set for density measurement
Results: *Settling kinetic*

Initial MES = 56 g/l
Settling speed: \(V = 0.3 \) m/h
Compression starts after about 6 hours
Results: E_H and pH
Results: *Ca and Na*
Results: Fe and Mn
Results: *Fe*

Six samples are plotted in a pE/pH stability diagram for aqueous iron species (Kölling *et al.*, 1999).

At the sediment/water interface:
1. after 3.3 days
2. after 7 days
3. after 12 days
4. after 36 days
5. after 72 days jours d’expérience

In the middle of the column:
6. after 36 days

\[
Fe^{2+} + O_2 + H_2O \rightarrow Fe(OH)_3^0 + 2H^+_3
\]

EPI
Results: SO_4^{2-} and aqueous P

![Graph showing concentrations of SO_4^{2-} and P over time](image)
Results: metals

- **Zn**
 - Concentration /µg l⁻¹
 - Time /days

- **Cd**
 - Concentration /µg l⁻¹
 - Time /days

- **Pb**
 - Concentration /µg l⁻¹
 - Time /days

Graphs show the concentration of Zn, Cd, and Pb over time at different interfaces:
- Air/water interface
- Middle of the water column
- Sediment/water interface
Results: synthesis

1. Settling and compression, release of oxidation products (SO_4^{2-}, H^+, Ca^{2+}, Mg^{2+}, Mn^{2+})

2. Degazing and compression, release of reduction and mineralization products (Fe^{2+}, $P_{aqueous}$) – possible release of pollutants in colloidal form

3. Dispersion of solutes probably due to colloids destabilisation due to iron hydroxides precipitation

4. Equilibrium: 2 systems with opposite redox co-exist.
Conclusion

> Equilibrium of both water and sediment is not reached before 50 days of experiment,

> During the first 30 days following re-deposition, release of metals may occur. It is probably link to the mechanical release of colloids due to bubbling,

> This source of contaminants for the water column is difficult to quantify,

> Is it a significant source of pollutants for the biocenose?
Perspectives

> What is the behavior of other pollutants?
 • As, which may compete with P?
 • Organics, which are mainly linked to organic matter in sediment?

> GedSet, a new Interreg 4 research project, has been accepted and should bring some answers.