THE USE OF THE SEDIMENT QUALITY TRIAD FOR QUALITY ASSESSMENT OF FRESHWATER SEDIMENTS IN NORTHERN SPAIN

Zuriñe Maestre, Pilar Rodriguez and Maite Martinez-Madrid

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
OBJECTIVES

- To provide a screening-level ecological risk assessment of freshwater sediments using 3 Lines of Evidence: Sediment Chemistry, In-situ Alteration and Sediment Toxicity

- To evaluate the contribution of sediment toxicity data and Sediment Quality Triad (SQT) to the Ecological Status assessment performed by Spanish Water Authorities

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
Water Quality Surveillance Networks
- Environment and Territorial Planning Dept of the Basque Government
- Housing and Territorial Planning Dept of the Navarra Government
- Ebro Hydrographical Confederation
- Northern Hydrographical Confederation

Water Authorities provided data on sediment chemical concentration and/or benthic community data for 60 sites (2004-06)

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
Sediment Chronic Toxicity Test

Tubifex tubifex (Annelida, Clitellata) 28-day sediment chronic bioassay

Endpoints:
- **%Survival**
- **CCAD** (N. of cocoons/adult)
- **%Hatch** (N. empty cocoons/N. total cocoons)
- **YGAD** (N. young/adult)
- **TGR** (Total Growth Rate, mg dw d⁻¹, somatic and reproductive biomass)

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
Sediment Chronic Toxicity Test

Tubifex tubifex (Annelida, Clitellata) 28-day sediment chronic bioassay

EXPOSURE CONDITIONS
- 22.5 ± 0.5°C
- in the dark
- Test chamber: 250 ml
- Sediment volume: 100 ml, sieved through 500 µm mesh
- Overlying dechlorinated water: 100 ml. No water renewal

- Slight aeration
- 4 mature worms per chamber
- 6-7 weeks old
- Fed with trout flakes

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
LOE 1: *In situ* Alteration - Biota

Ecological Quality Ratio (EQR) for IBMWP = \(\frac{\text{Observed value}}{\text{Reference Condition Value in each ecoregion}} \)

- **EQR close to 1**
 - **Very Good status**: No or very minor deviation from the reference condition (RC)
 - **Good status**: Slight deviation from the RC
 - **Moderate status**: Moderate deviation from the RC
 - **Poor status**: High deviation from the RC
 - **Bad status**: Very High deviation from the RC

- **EQR close to 0**

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
LOE 1: *In situ* Alteration- Habitat

METRICS

- QBR: a riparian wood index (Munné et al. 1997) that includes both river-bed and riparian wood characteristics analyses.
- Hydro-morphological alterations (H-A): assess river continuity, hydrological regime, hydrodynamics, and so on.

<table>
<thead>
<tr>
<th>TRIAD ordinal ranking</th>
<th>-</th>
<th>±</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat Alteration</td>
<td>No or slight alteration</td>
<td>Moderate alteration</td>
<td>High or extreme alteration</td>
</tr>
</tbody>
</table>

In situations where habitat alterations are detected, reliance must be placed on the sediment toxicity (Chapman 2007)

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
LOE 2: Sediment Toxicity

Procedure to establish the reference condition for the *T. tubifex* sediment bioassay endpoints:

IBMWP - EQR

First step: Select “Possible” reference sites

Second step: Apply criteria for excluding altered reference sites (Reynoldson et al. 2002):
- sites with less than 50% survival
- sites with 2 or more sublethal endpoints below the 5th percentile

Third step: Establish 3 categories of toxicity for each endpoint to classify test-sediments

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
LOE 2: Sediment Toxicity

CATEGORIES OF RESPONSE TO SEDIMENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>%Survival</th>
<th>CCAD</th>
<th>%Hatch</th>
<th>YGAD</th>
<th>TGR</th>
<th>TRIAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Toxic</td>
<td>>76.0</td>
<td>>6.5</td>
<td>>11.2</td>
<td>>2.8</td>
<td>>0.83</td>
<td>-</td>
</tr>
<tr>
<td>Potentially Toxic</td>
<td>75.0-61.3</td>
<td>6.4-5.7</td>
<td>11.1-6.1</td>
<td>2.7-1.5</td>
<td>0.82-0.39</td>
<td>±</td>
</tr>
<tr>
<td>Toxic</td>
<td><61.2</td>
<td><5.6</td>
<td>6.0</td>
<td>1.4</td>
<td>0.38</td>
<td>+</td>
</tr>
</tbody>
</table>

Reference-sites endpoint values distribution

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
LOE 3: Bulk-sediment metal concentration

No SQG for the study region

Test Effect-based SQG developed for other regions:

- Consensus-based PEC (USEPA, 2000; MacDonald et al. 2000),
- PEL (NOAA, 2006; Canadian Environmental Guidelines, 2003),
- RV-Y (Flanders, ANZECC, 1997-2008),

Consensus-based PEC was the SQG that best predicts samples as Non-toxic or Toxic

(following methodology described in Vidal & Bay 2005)

<table>
<thead>
<tr>
<th>Criteria (based in Chapman & Anderson 2005)</th>
<th>Assessment</th>
<th>TRIAD ordinal ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Metal concentrations < TEC</td>
<td>Adverse effects unlikely</td>
<td>-</td>
</tr>
<tr>
<td>≥1 metal concentration > TEC</td>
<td>Adverse effects may / may not occur</td>
<td>±</td>
</tr>
<tr>
<td>≥1 metal concentration > PEC</td>
<td>Adverse effects likely to occur</td>
<td>+</td>
</tr>
</tbody>
</table>

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
RESULTS

SEDIMENT QUALITY TRIAD (SQT) decision matrix

<table>
<thead>
<tr>
<th>Bulk Sediment Metal Concentration</th>
<th>Adverse effects unlikely</th>
<th>Adverse effects may or may not occur</th>
<th>Adverse effects likely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment Toxicity (Survival, Growth & Reproduction)</td>
<td>Negligible response</td>
<td>Potential response</td>
<td>Significant response</td>
</tr>
<tr>
<td>In-situ Alteration: Benthos (IBMWP) Habitat (QBR,H-A)</td>
<td>Equivalent to the reference condition</td>
<td>Possibly different from the reference condition</td>
<td>Different or very different from the reference condition</td>
</tr>
<tr>
<td>TRIAD ordinal ranking</td>
<td>-</td>
<td>±</td>
<td>+</td>
</tr>
</tbody>
</table>
Decision matrix for WOE categorization: Examination of 5 scenarios

<table>
<thead>
<tr>
<th>Sediment</th>
<th>Metal Conc.</th>
<th>Toxicity</th>
<th>In situ Alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surv.</td>
<td>Growth</td>
<td>Reprod.</td>
</tr>
<tr>
<td>ZAY 018</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OKMA 040</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RCVA 178</td>
<td>±</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>OI 102</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>URS 34</td>
<td>±</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>SP 18</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>A 202</td>
<td>±</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>BA 558</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AS 160</td>
<td>+</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>SP 8</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
Scenario A:

ZAY 018

OKMA 040

Metals
Survival
Growth
Reproduction

IBMWP
H-A
QBR

SQT: Sediment unpolluted. No evidence of adverse biological effects.

Water Authorities (EWF): High or Good Ecological Status

SQT supports the Ecological Status category. No risk present. No further action required.

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
Scenario B:

- (-) no significant adverse effect
- (±) potential adverse effect
- (+) significant adverse effect

RCVA 178

- Metals
- H-A
- QBR
- IBMWP

Survival

- Growth
- Reproduction

Water Authorities (EWF):

- **RCVA 178 High Ecological Status**
- **OI 102 Poor Ecological Status**

SQT: Contaminants present, but not available in current situation. No adverse biological effects

SQT evidences that currently contaminants don’t represent an ecological risk

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
Scenario C:

- (-) no significant adverse effect
- (±) potential adverse effect
- (+) significant adverse effect

Water Authorities (EWF):

URS34 High Ecological Status

SP18 Bad Ecological Status

SQT: Contaminants present. Sediment Toxic, but there is no evidence of field community alteration.

SQT provides evidences of Potential Adverse effects. Further analyses required (e.g. *in situ* tests)

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
Scenario D:

- (--) no significant adverse effect
- (±) potential adverse effect
- (+) significant adverse effect

Water Authorities (EWF):

A202: Poor Ecological Status

BA558: Bad Ecological Status

SQT: Contaminants present in the sediment are non-toxic. There is evidence of field community and habitat alteration.

SQT provides evidence of adverse effects occurring by unknown causes. Further analyses required (e.g. other test-species, in-situ tests).

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
Scenario E:

- **AS 160:** (-) no significant adverse effect
 (±) potential adverse effect
 (+) significant adverse effect

Metals Survival Growth Reproduction

- **H-A**
- **QBR**
- **IBMWP**

SP 8

Metals Survival Growth Reproduction

- **H-A**
- **QBR**
- **IBMWP**

Water Authorities (EWF):

AS 160: Bad Ecological Status

SP 8: Poor Ecological Status

SQT: Sediments highly polluted and toxic. Evidence of field community alteration.

SQT provides evidences of adverse effects and an unacceptable risk from sediment contamination. It supports the Ecological Status.

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
Reference Condition Approach
(Reynoldson et al. 2002)

Toxicity data ordination (MDS) of reference sediments

90%, 99% Probability Ellipses

Toxicity categories:
- **Non-Toxic**: inside 90% probability ellipse
- **Possibly Toxic**: between 90% and 99% probability ellipses
- **Toxic**: outside 99% probability ellipse

Stress: 0.15

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway
CONCLUSIONS

- Problems for the integration of ALL databases:
 - Water Authorities measured different Organic Compounds in all sites. In consequence, they could not be included in the decision matrix.
 - Lack of standardization of the sediment fraction used for chemical analyses done by different Water Authorities.
 - Ecoregions shared by different Water Authorities had different values for the ecological reference condition, which was incongruent.

- The SQT provides an Ecological Risk Assessment that supports Ecological Status for sites in the extreme range of the risk assessment (+) and (-) (45% sites). In other intermediate situations, SQT has proved the utility of the Toxicity Line of Evidence as indicative of potential environmental risk (28% sites). In other sites (27%), further research is required because of insufficient information.

Maestre, Z., Rodriguez, P., Martinez Madrid, M. 5th International SedNet Conference, Oslo, Norway