Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

5th International SedNet Conference
27th-29th May 2008

Backfilling of the Eastport in Bremerhaven/Germany
Organic Harbour Mud as Construction Material

27. May 2008
Dipl.-Ing. Dirk Lesemann, PHW mbH, Hamburg
for
Hans Nickels, Kai Petereit (PHW mbH),
Klaus Waßmuth (Heinrich Hirdes GmbH),
Christoph Tarras, Stefan Woltereing (bremenports GmbH & Co.KG)
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

- 620 m sheet pile wall
- King and batter piles: PSP 800 to PSP 900
- Placing of approx. 170,000 m³ silt
- Placing of approx. 100,000 m² loaded geotextile
- Placing of approx. 260,000 m³ sand with spraying method approx. 85,000 m³
 with flushing method ca. 175,000 m³
- Consolidation acceleration
 approx. 70,000 pieces of vertical drains
- Vacuum surcharge (optional)
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

Construction progress – as planned

Initial situation
- Silt (O)
- Clay/ Peat (O)
- Sand (O)

Installation of sheet pile wall
- Silt (O)
- Clay/ Peat (O)
- Sand (O)

Replacement of harbour mud
- Silt (B)
- Clay/ Peat (O)
- Sand (O)

(O): originally; (B): backfilled; (SP): sprayed; (SF): flushing
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

Construction progress – as planned

- Installation loaded geotextile
- Sand installation (spraying)
- Sand installation (flushing)

(O): originally; (B): backfilled; (SP): sprayed; (SF): flushing
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

Construction progress – as planned

- Installation loaded geotextile
 - Silt (B)
 - Silt (O)
 - Clay /Peat (O)
 - Sand (O)

- Sand installation (spraying)
 - Silt (B)
 - Silt (O)
 - Clay /Peat (O)
 - Sand (O)

- Installation of vertical drainage stripes
 - Silt (B)
 - Silt (O)
 - Clay /Peat (O)
 - Sand (O)
 - Sand (SF)
 - Sand (SP)

(O): originally; (B): backfilled; (SP): sprayed; (SF): flushing
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

Precaution in design process

- Intensive geotechnical design in the design process by 3 experts.
- Wet assembly (sand): different parallel test methods for controlling of the layer thickness.
- Geotechnical measurement project
 - testing of the silt quality during the rearrangement.
 - permanent controlling of the silt strength and the silt consolidation after rearrangement.
- Geotechnical design being regularly updated (actual and forecast).
- Comparative geotechnical design from contractor/constructor
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

Rearrangement of organic harbour mud

<table>
<thead>
<tr>
<th>Silt (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt (O)</td>
</tr>
<tr>
<td>Clay/Peat (O)</td>
</tr>
<tr>
<td>Sand (O)</td>
</tr>
</tbody>
</table>
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

Installation loaded geotextile

Sand spraying

Silt (B)
Silt (O)
Clay/Peat (O)
Sand (O)

Silt (B)
Silt (O)
Clay/Peat (O)
Sand (O)
Backfilling of the Eastport in Bremerhaven

Organic Harbour Mud as Construction Material
Unexpected Surface distortion

- At the installation of the 5th sand layer during the spray coat method (D = 20 cm),

- "unexpected surface distortion" in the field,

- circular bulges (silt),

- slipping of the sand layer in the area of the circular bulge,

- non failure of the geotextile,

- slowdown during approx. 10 days,

- big areas of construction site being affected almost at the same time.
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

Unexpected Surface distortion

survey 07.11.2005
Unexpected Surface distortion

comparison design and survey: surface

1 m
Field enquiry

- Analyzed parameter:
 - shear strength of the silt,
 - homogeneity of the silt,
 - thickness of the existing sand layer,
 - position of the geotextile.

- "building blocks" of causes taken into consideration:
 - (local) lower silt strength than assumed in design process,
 - inevitable tolerance transgressions in the construction process,
 - large density differences in the silt in connection with (partly) high salt contents,
 - „mud flow“ in the harbour during and prior construction phase,
 - ground liquefactions during the construction process,
 - impetus in the silt by gas (bulbs),
 - strongly reduced permeability of the geotextile by hydrocarbons in a multiphase flowsystems,
Unexpected Surface distortion

Thickness of sand layer (survey 11.11.2005); design thickness: 80 cm

d_s = 1 m

Measured shear strength (11.11.2005)

\[c_u = 0.5 \text{ kN/m}^2 \]
Change of construction progress

- Requirement:
 - safe construction and rapid progress of construction works,
 - consideration of causal components,
 - usability of the refilled area,
 - limiting the additional expenses to the best economic level.

→ no further loading of the surface

→ lowering the pressure in the silt layer (gas/water).
Change of construction progress

- Design and construction implementation:
 - installation of vertical drainage from floating equipment,
 - installation of low pressure dewatering (BeauDrainS-method),
 - intensive inspections on construction site (visual and measuring tech.),
 - permanent update of the stability calculations on the basis of the field measurements and laboratory tests (actual and forecast; constructor and contractor parallel),
 - application of the observation method according to DIN 1054,
 - installation of sand; first dry setting with PistenBullies, later by flushing with “extreme lightweight equipment”.

bremenports
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

placing of (dry) Sand by PistenBully

placing of sand flushing method

Sand (SP)
Silt (O)
Clay, Peat (O)
Sand (O)

Sand (SE)
Silt (O)
Clay, Peat (C)
Sand (O)
Backfilling of the Eastport in Bremerhaven
Organic Harbour Mud as Construction Material

spring 2005

autumn 2006
Auch Chef-Ingenieur Woltering „würde es wieder so machen“. „Schließlich habe das innovative Verfahren Millionen gespart. Wäre der Schlick nicht verbaut worden, hätte man ihn auf einer Bremer Deponie entsorgen müssen. 24
Consequences for future "silt", projects.

- The disadvantageous influence factors like microbial and ground mechanical qualities of the silt should be more examined.

- Large density differences and cavities by gas formation must be taken into account on stability forecasts.

- Reconsideration of the method for the land reclamation / backfill with sands and optimizing the installation time for the vertical drainage.

- All used components should be tested before under conditions similar to the construction site as best as possible.

- The “restart of microbial processes” in the silt at the time of the rearrangement must be taken into account.
Thanks a lot for your attention.