

How can we improve the sediment risk assessment in the Port of Hamburg Maintenance Dredging Program? - A new concept is needed

Dr. Carolin Floeter

SedNet Conference 7-8 Oct. 2009, Hamburg

OUTLINE

- I. Implementation of toxicity tests in international dredged material management guidelines
- II. Ecotoxicological risk assessment according to national dredged material management guidelines
- III. Results of the ecotoxicological assessment of dredged material from the Elbe fairway of Hamburg
- **IV. Reliability of the test results**
- V. Harmonisation of test procedures
- VI. Future Outlook: A new concept is needed

I. Implementation of toxicity tests in international dredged material management guidelines

I. Implementation of toxicity tests in international conventions

London Convention (2000)

Biological characterization

4.7 If the potential impacts of the dredged material to be dumped cannot be assessed on the basis of the chemical and physical characterization and available biological information, biological testing should be conducted.

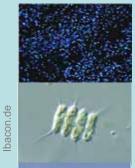
[...]

Biological characterization of dredged material

Method	OSPARCOM	HELCOM	LC
 Biological tests: acute toxicity chronic toxicity potential for bioaccumulation potential for tainting 	X	X	X
Biomarker	X	Х	
Microcosm	X	Х	
Mesocosm	X	Х	
Benthic Community	X	Х	X

II. Ecotoxicological risk assessment according to national dredged material management guidelines

Directives for the Handling of Dredged Material on Federal Waterways

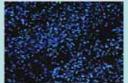

Inland waters (HABAB 2000)
 Freshwater test-set

Coastal waters (HABAK 1999)

Saltwater test-set

*

*



Bioluminescence test DIN EN ISO 11348-2 (1998)

Freshwater algae test DIN 38412-L33 (1981)

Acute toxicity Daphnia DIN 38 412 - L30 (1989)

Bioluminescence test DIN EN ISO 11348-2 (1998) (mod.)

Marine algae test DIN EN ISO 10253 (2006)

Bacteria solid contact test DIN 38412-48 (2002)

Acute toxicity amphipods DIN EN ISO 16712 (2007)

II. Ecotoxicological risk assessment according to national dredged material management guidelines

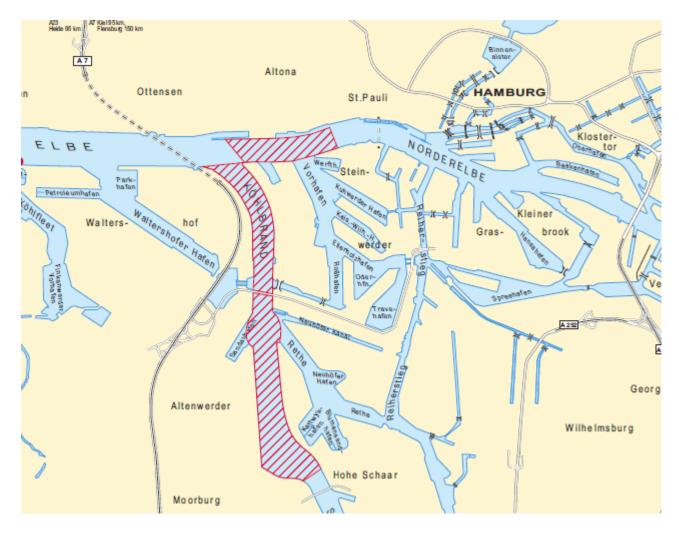
Evalution of the test results

HABAB - Inland waters

Highest dilution step without effect	Dilution factor	pT-value		Toxicity class	Management categories (HABAB 2000)
Original sample (80%)	2 ⁰	0	0	toxicity not detectable	Case 1:
1:2	2 ⁻¹	1	I	very low toxicity	unrestricted disposal possible
1:4	2 ⁻²	2	Ш	low toxicity	
1:8	2 ⁻³	3	Ш	moderate toxicity	Case 2:
1:16	2-4	4	IV	increased toxicity	Case-by-case decision of disposal
1:32	2 ⁻⁵	5	V	high toxicity	Case 3:
1:64 and higher	≤ 2 ⁻⁶	6	VI	very high toxicity	should not be disposed
pT-∨alue for each test				on the most	based on ecotoxicological assessment
	1	1	sensitiv	e test of the test-set	,

II. Ecotoxicological risk assessment according to national dredged material management guidelines

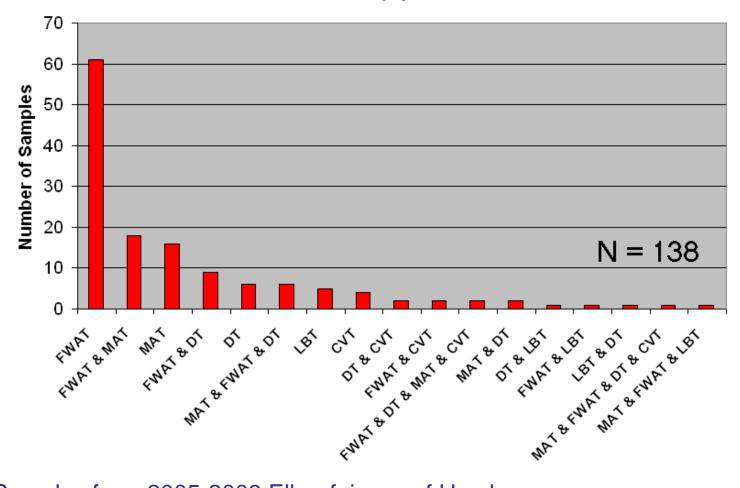
Evalution of the test results HABAK – Coastal waters


pT-value		Toxicity class	Management categories (HABAK 1999)
0	0	toxicity not detectable	Case 1:
1	1 I.	very low toxicity	Disposal at sea possible.
2	I	low toxicity	Monitoring after 3 years.
3	III	moderate toxicity	Case 2: Disposal at sea depends on weighing against land disposal and
4	IV	increased toxicity	impact hypothesis. Impact reduction procedures. Monitoring after 3 years.
5	V	high toxicity	Case 3: Disposal at sea depends on weighing against land disposal and impact
6	VI	very high toxicity	hypothesis. Intensive impact reduction procedures. Monitoring after 1-3 years.
	based	on the most	based on ecotoxicity, chemical analysis
	sensitiv	/e test of the test-set	of pollutants and nutrients

II. Ecotoxicological risk assessment according to national dredged material management guidelines

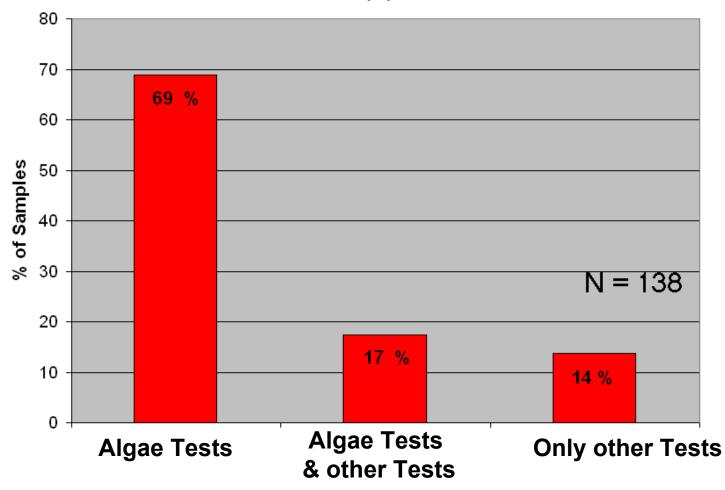
HABAK – Coastal waters

pT-value		Toxicity class	Management o	ategories (HABAK 1999)	
0	0	toxicity not detectable	Case 1:		
1	1 I.	very low toxicity	Disposal at sea possible		
2	Ш	low toxicity	Monitoring after 3 years.		
3	111	moderate toxicity	Case 2: Disposal at sea	der	ৰ্যাsposal and
4	IV	increased toxicity	impact hypothesis. Impa	+ additional	r 3 years.
5	V	high toxicity	Case 3: Disposal at sea	agreements with	osal and impact
6	VI	very high toxicity	hypothesis. Intensi∨e im		fter 1-3 years.
	based o	on the most	based on ecotoxicity, ch	emica	
	sensiti∨	e test of the test-set	of pollutants and nutrient		
1		1			1


III. Results of the ecotoxicological sediment assessment from the Elbe fairway of Hamburg

HPA 2007

III. Results of the ecotoxicological sediment assessment from the Elbe fairway of Hamburg


The most sensitive test(s) of the test set

Samples from 2005-2009 Elbe, fairway of Hamburg

III. Results of the ecotoxicological sediment assessment from the Elbe fairways of Hamburg

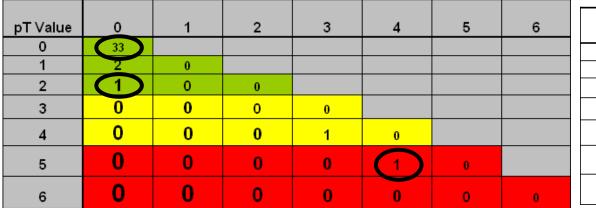
The most sensitive test(s) of the test set

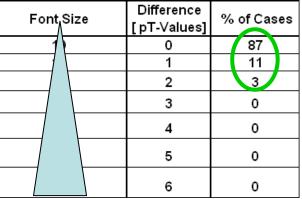
Samples from 2005-2009 Elbe, fairway of Hamburg

IV. Reliability of the test results

1. Analysis of unknown double samples/ measurements within the laboratories - intra-laboratory comparison

- Elbe & harbour samples (2006-2009/08)
 - Freshwater test-set
 - Marine test-set
 - Intra-comparison of 2 laboratories
- North Sea samples (2006-2009/04)
 - Marine test-set
 - Intra-comparison of 1 laboratory

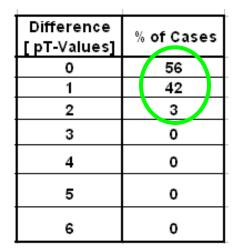

IV. Reliability of the test results


Criteria for the evaluation of the intra-laboratory comparison

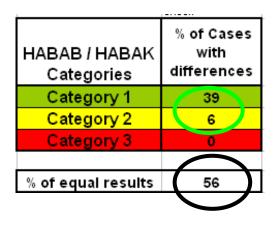
> delta pT-values
 % of sample-pairs, for which equal pT-values were determined
 maximum pT-difference
 pT-difference leads to HABAB/HABAK Case 3 category

Intra-laboratory comparison – Elbe Bioluminescence Assay (LBT) – Lab 1

pT - Value Matrix of Double Measurements [N] (N=38) (PW+EL)


pT Value	0	1	2	3	4	5	6
0	87						
1	5	0					
2	3	0	0				
3	0	0	0	0			
4	0	0	0	3	0		
5	0	0	0	0	3	0	
6	0	0	0	0	0	0	0

HABAB / HABAK Categories	% of Cases with differences
Category 1	8
Category 2	3
Category 3	3
% of equal results	87
1	


Intra-laboratory comparison – Elbe Daphnia test (DT) – Lab 1

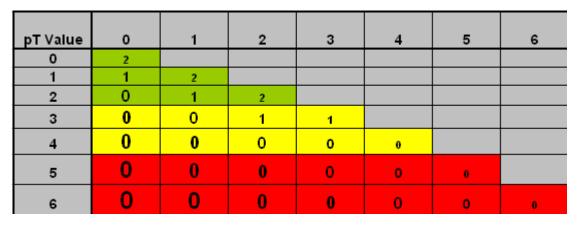
pT - Value Matrix of Double Measurements [N] (N=36) (PW+EL)

pT Value	0	1	2	3	4	5	6
0	5						
1	8	5					
2	0	6	9				
3	0	1	0	1			
4	0	0	0	1	0		
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	0

pT Value	0	1	2	3	4	5	6
0	14						
1	22	14					
2	0	17	25				
3	0	3	0	3			
4	0	0	0	3	0		
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	0

Intra-laboratory comparison – Elbe Freshwater Algae Test (FWAT) – Lab 1

pT - Value Matrix of Double Measurements [N] (N=52) (PW+EL)

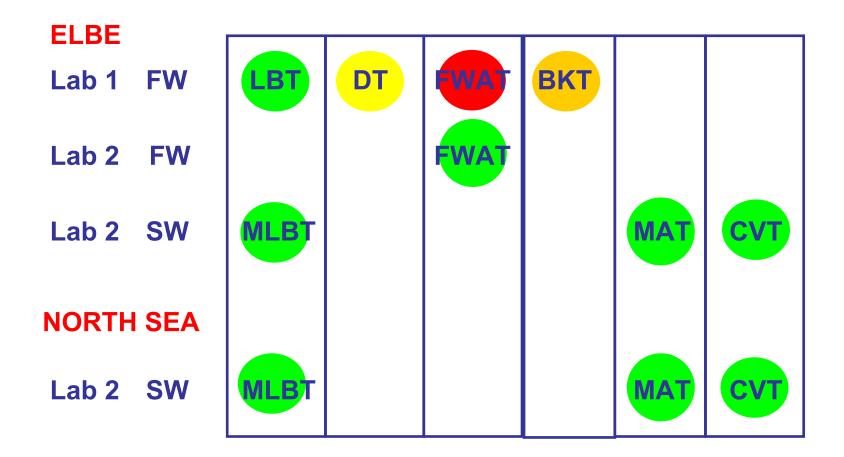

Difference [pT-Values]	% of Cases
0	37
1	37
2	10
3	15
4	2
5	0
6	0

	0	1	2	3	4	5	6
0	4						
1	2	6					
2	2	8	10				
3	4	0	15	12			
4	0	2	4	8	4		
5	0	0	6	4	4	2	
6	0	0	2	4	0	0	0

HABAB / HABAK Categories	% of Cases with differences
Category 1	12
Category 2	33
Category 3	19
% of equal results	37

Intra-laboratory comparison – Elbe Freshwater Algae Test (FWAT) – Lab 2

pT - Value Matrix of Double Measurements [N] (N=10) (PW+EL)



pT Value	0	1	2	3	4	5	6
0	20						
1	10	20					
2	0	10	20				
3	0	0	10	10			
4	0	0	0	0	0		
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	0

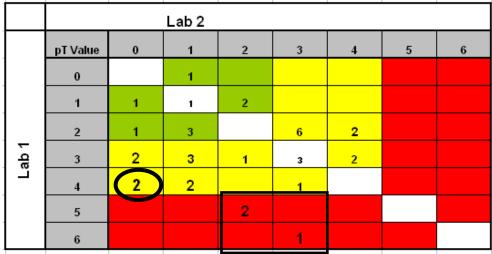
Difference [pT-Values]	% of Cases
0	70
1	30
2	0
3	0
4	0
5	0
6	0

HABAB / HABAK Categories	% of Cases with differences
Category 1	20
Category 2	10
Category 3	\circ
% of equal results	70

Summary Reliability of the test results – intra-laboratory comparison

Summary Reliability of the test results – intra-laboratory comparison

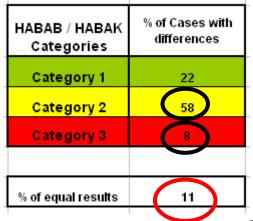
- The freshwater algae test (FWAT) dominated the ecotoxicological classification of the dredged material from the fairway of Hamburg (2005-2009) as most sensitive test.
- The FWAT intra-laboratory comparison of unknown double samples/ measurements showed for Elbe & harbour samples
 weak reliability in Lab1 (2006-2009, N=52),
 good reliability in Lab2 (2009, N=10).
- The Daphnia test (DT) and the bacteria contact assay (BKT)
 needs further improvement in accuracy & precision in Lab1
- The marine bioassays (Elbe & North Sea samples)
 good reliability in Lab2.


IV. Reliability of the test results

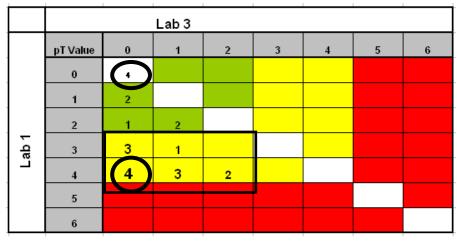
2. Analysis of unknown double sample/ measurements with the freshwater algae test - inter-laboratory comparison

- Elbe & Harbour Samples (2009)
 - Comparison of
 - Lab 1 & Lab 2
 - Lab 1 & Lab 3

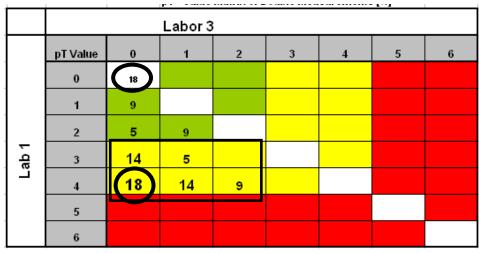
Inter-laboratory comparison– Elbe Freshwater Algae Test Lab 1 – Lab 2


pT - Value Matrix of Double Measurements [N] (N=36) (PW+EL)

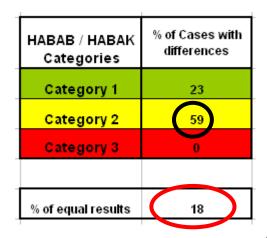
pT - Value Matrix of Double Measurements [%]


			Lab 2				••	
	pT Value	0	1	2	3	4	5	6
	0		3					
	1	3	3	6				
	2	3	8		17	6		
Lab 1	3	6	8	3	8	6		
Ľ۱	4	6	6		3			
	5			6				
	6				3			

Difference [pT- Values]	% of Cases
0	11
1	47
2	17
3	19
4	6
5	0
6	0



Inter-laboratory comparison– Elbe Freshwater Algae Test Lab 1 – Lab 3


pT - Value Matrix of Double Measurements [N] (N=22) (PW+EL)

pT - Value Matrix of Double Measurements [%]

Difference [pT-	
Values]	% of Cases
0	18
1	18
2	18
2	10
3	27
4	18
5	0
3	0
6	о

IV. Reliability of the test results Conclusion

Strong need for

- improvement
- harmonisation

of the test procedures

specially for the freshwater algae test

V. Harmonisation of test procedures

Steps, which have been undertaken since 2008:

- 1. New, state-of-the-art guidance documents for sample preparation and each test procedure were developed.
- 2. Extensive and standardised database was established for each lab/ test/ sample.
- 3. First identification of key variables:
 - storage (duration/ temperature) of samples (Sed/EL/ PW)
 - Consideration of background fluorescence (AT, LBT)
 - Calibration of cell-density/ fluorescence (AT)
 - "fitness" of the controls (CVT, AT)
 - confounding factors e.g. ammonia toxicity, hydrogen sulphide

VI. Future Outlook: A new concept is needed

Step 1 : Improving and harmonisation of ecotoxicological test procedures

Maximising intra-laboratory precision & accuracy

Step 2: Validation of the test procedures with a round robin test (inter-laboratory comparison)

Step 3: Development of a new concept

Development of a new concept

The current situation

1) The ecotoxicological sediment classification is based on the result of the most sensitive test, irrespective of the results of the other tests.

The Future

Integrate all test results into the ecotoxicological assessment (e.g. Fuzzy Logic & Hasse Diagram Methods (Heise & Ahlf 2009))

Calculation of the test results considering the complete dilution series (EC50-values)

2) The test-set results are highly variable, but the logistic organization of the disposal needs a decision half a year in advance.

Identify typical categories of test results based on

- temporal & spatial pattern
- statistical modelling

Thank you for your attention !

Thanks to the Hamburg Port Authority for the good cooperation and funding this project.

Intra-laboratory comparison – Elbe Bacteria Contact Assay (BKT) – Lab 1

Class Matrix of Double Measurements (N=78) (1g, 2g, 3g)

Class	1	2	3
1	47		
2	14	12	
3	2	2	1

Difference [Class #]	% of Cases
0	77
1	21
2	3

Class Matrix of Double Measurements [%]

Class	1	2	3
1	60		
2	18	15	
3	2.6	2.6	1

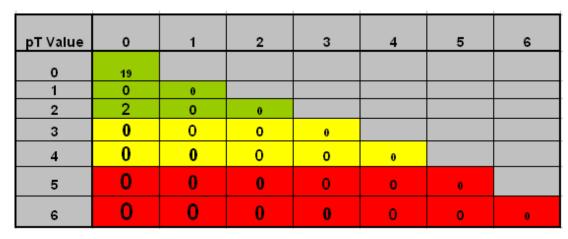
% Inhibition	Class
0-49	1
50-74	2
75-100	3

% of Cases with differences
0
18
5
77

Intra-laboratory comparison – Elbe Marine Algae Test (MAT) – Lab 2

pT - Value Matrix of Double Measurements [N] (N=36) (PW+EL)

pT Value	0	1	2	3	4	5	6
0	5						
1	0	8					
2	0	4	8				
3	0	1	5	1			
4	0	0	1	1	1		
5	0	0	0	0	0	1	
6	0	0	0	0	0	0	0


Difference [pT- Values]	% of Cases
0	67
1	28
2	6
3	0
4	0
5	0
6	0

pT Value	0	1	2	3	4	5	6
0	14						
1	0	22					
2	0	11	22				
3	0	3	14	3			
4	0	0	3	3	3		
5	0	0	0	0	0	3	
6	0	0	0	0	0	0	0

HABAB / HABAK Categories	% of Cases with differences
Category 1	11
Category 2	22
Category 3	\mathbf{C}
% of equal results	67

Intra-laboratory comparison – Elbe Marine Bioluminescence Assay (MLBT) – Lab2

pT - Value Matrix of Double Measurements [N] (N=21) (PW+EL)

Difference [pT-Values]	% of Cases
0	90
1	0
2	10
3	0
4	0
5	0
6	0

pT Value	0	1	2	3	4	5	6
0	90						
1	0	0					
2	10	0	0				
3	0	0	0	0			
4	0	0	0	0	0		
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	0

HABAB / HABAK Categories	% of Cases with differences
Category 1	10
Category 2	0
Category 3	
% of equal results	90
1	

Intra-laboratory comparison – Elbe Marine Amphipod test (CVT) – Lab2

Class Matrix of Double Measurements [N] (N=18)

Class	1	2	3
1	13		
2	2	1	
3			2

Difference [Class #]	% of Cases
0	89
1	11
2	0

Class Matrix of Double Measurements [%]

Class	1	2	3
1	72		
2	11	6	
3			11

HABAB / HABAK Categories	% of Cases
Category 1	89
Category 2	11
Category 3	\bigcirc
% of equal results	89

Intra-laboratory comparison – North Sea Marine Bioluminescence test (MLBT) – Lab 2

pT - Value Matrix of Double Measurements [N] (N=28) (PW+EL)

pT Value	0	1	2	3	4	5	6
0	28						
1	0	0					
2	0	0	0				
3	0	0	0	0			
4	0	0	0	0	0		
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	0

Difference	% of Cases
[pT-Values]	
0	100
1	0
2	0
3	0
4	0
5	0
6	o

pT Value	0	1	2	3	4	5	6
0	100						
1	0	0					
2	0	0	0				
3	0	0	0	0			
4	0	0	0	0	0		
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	0

HABAB / HABAK Categories	% of Cases with differences
Category 1	0
Category 2	0
Category 3	0
% of equal results	100

Intra-laboratory comparison – North Sea Marine Algae Test (MAT) – Lab 2

pT - Value Matrix of Double Measurements [N] (N=28) (PW+EL)

pT Value	0	1	2	3	4	5	6
0	26						
1	2	0					
2	0	0	0				
3	0	0	0	0			
4	0	0	0	0	0		
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	0

Difference [pT-Values]	% of Cases
0	93
1	7
2	0
3	0
4	0
5	0
6	0

			1				
pT Value	0	1	2	3	4	5	6
0	93						
1	7	0					
2	0	0	0				
3	0	0	0	0			
4	0	0	0	0	0		
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	0

HABAB / HABAK Categories	% of Cases with differences
Category 1	7
Category 2	0
Category 3	6
% of equal results	93
1	

Intra-laboratory comparison – North Sea Marine Amphipod Test (CVT) – Lab 2

Class Matrix of Double Measurements [N] (N=14)

Class	1	2	3
1	12		
2	2	0	
3	0	0	0

Difference [Class #]	% of Cases
0	86
1	14
2	0

Class Matrix of Double Measurements [%]

Class	1	2	3
1	86		
2	14	0	
3	0	0	0

HABAB / HABAK Categories	% of Cases
Category 1	86
Category 2	14
Category 3	0
% of equal results	86
% of equal results	86