Influence of land use in small karst catchments on the chemical status of peloid sediments on the eastern Adriatic coast

<u>Slobodan Miko¹</u>, Šparica Marko¹, Georg Koch¹, Martina Šparica Miko¹, Stanislav Bergant¹

¹Croatian Geological Survey, Sachsova 2, Zagreb, Croatia

SedNet Conference

General context

Peloids are defined as mud which is applied topically as therapeutic agents (Carretero, 2002). In the past 15 years, research of peliods/healing mud on the Adriatic coast has become important because of the needs for the development of high quality tourism.

Most of the catchments areas supplying water and mineral mater to the Adriatic bays with peloids are affected by various degrees of human impact, i.e. activity that is introducing various types of pollutants to environment.

Mostly these are agricultural activities linked with vine and olive production (various types of agrochemicals; Bordeaux mixture and other types of herbicides) but in some areas there are industrial impacts and municipal waste impacts.

General context

During pelotherapy several kilograms of matured mud are rubbed into the body. The peloid acquire chemical elements from the maturation environment both as soluble ions and complexes, and leave them (part of them) to the human skin (cit. F. Tateo).

The therapeutic effects of the treatment are based on mechanisms that are unknown in details, but the triggers of benefits seems to be the heat, the thermophysical properties (malleability, adhesion and warmth that brings immediate relief to the muscles) and the transfer of chemical compounds to the organisms(cit. F. Tateo).

Sed Net

SedNet Conference "Sediment key-issues between the river and the sea", Venice, 23-24 November 2006.

Objectives

Classify critical points (contamination sources on the catchment area) according to risks on sediment quality

➔ Impact on the chemical status of sediments Criteria for peloids to be used for therapy = baseline "slight impact values", trigger values or element enrichment factors, mobile fractions from sequential analysis)

Other alternatives : recommending search for less impacted sediments/peloids

Change of land use practices (remediation of contaminated land)

Determine guideline/trigger values for healing mud/peloids.

Methods

Geochemistry, mineralogy, palinology, geomorphology

Geochemistry

sampling of soils, sediments (stream and marine) and ash

Measure the total metal content of the soils.

Normalization data on conservative elements

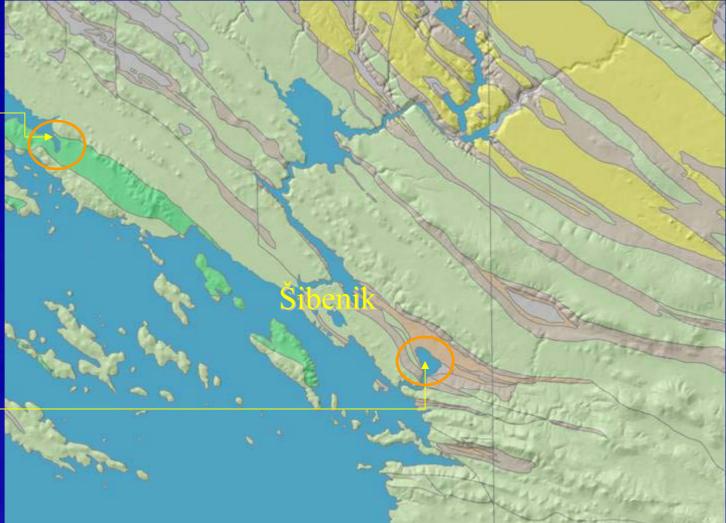
EF = ([M]/[Sc])_{recent sediment} / ([M]/[Sc])_{preanth. sediment} → Measure bioaccessible metals of the soils, sediments and ash by sequential extraction methods (3 step BCR)

The karst

SedNet Conference

Peloid deposits

Makirina t Morinje bo


Geology

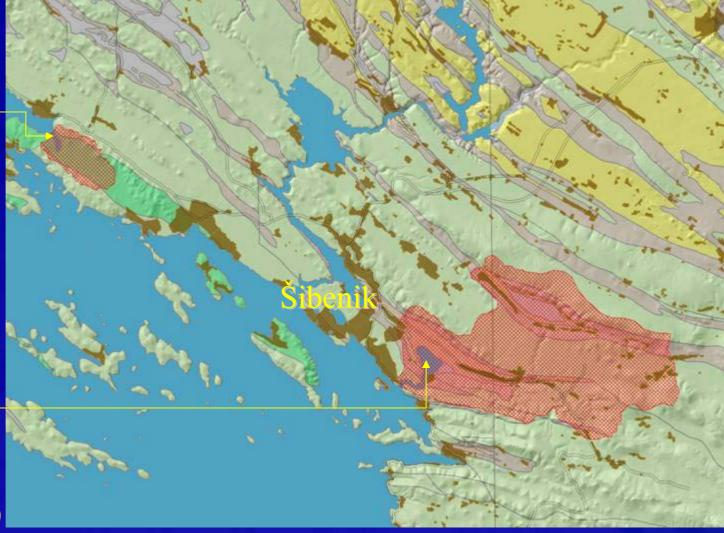
Makirina bay -

Limestone/ dolomite

Marls

Morinje bay

SedNet Conference


The catchments

Makirina bay

catchment size 7 km² Population 35 Arable land 3 km²

Morinje bay catchment size 103 km² Population 1850 Arable land 16 km²

Sec

SedNet Conference

The Morinje bay catchment

Morinje Bay

Morinje Bay (3.5 km²) represents an restricted, shallow marine (<2m) ecosystem which communicates with the open Adriatic Sea by a 150-350 m wide and 2.5 km long Morinje channel. The surface of the

catchment is 103 km²

Morinje bay

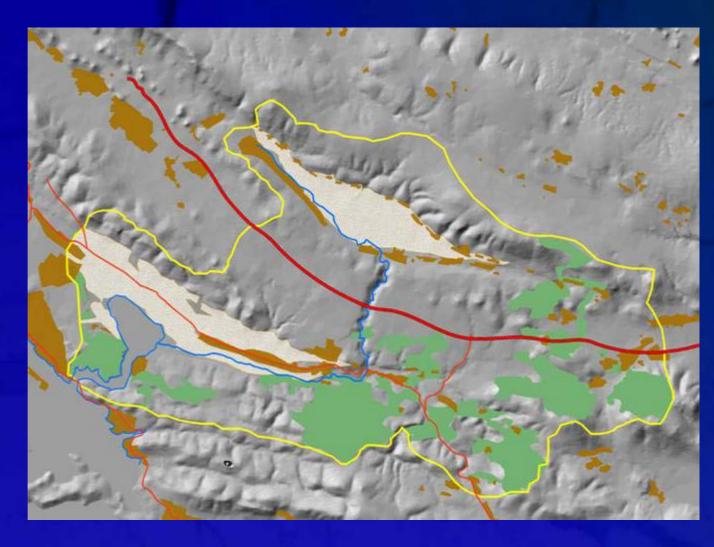
Sediment thickness from 0-7 m

Debljina sedimenata

Sea depth from 0-2 m

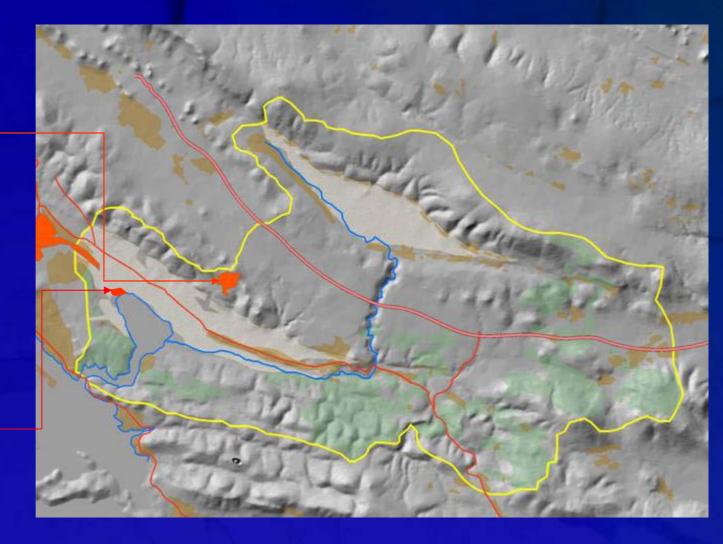
Sed Net

SedNet Conference


Morinje bay land use

SedNet Conference

Morinje bay land use


Sed Net

SedNet Conference

Morinje bay local/point pollution sorces

Municipal waste landfill

Municipal + medical ash disposal site

SedNet Conference

Morinje bay pollution sources

SedNet Conference

Soil sampling

SedNet Conference

Sed Net

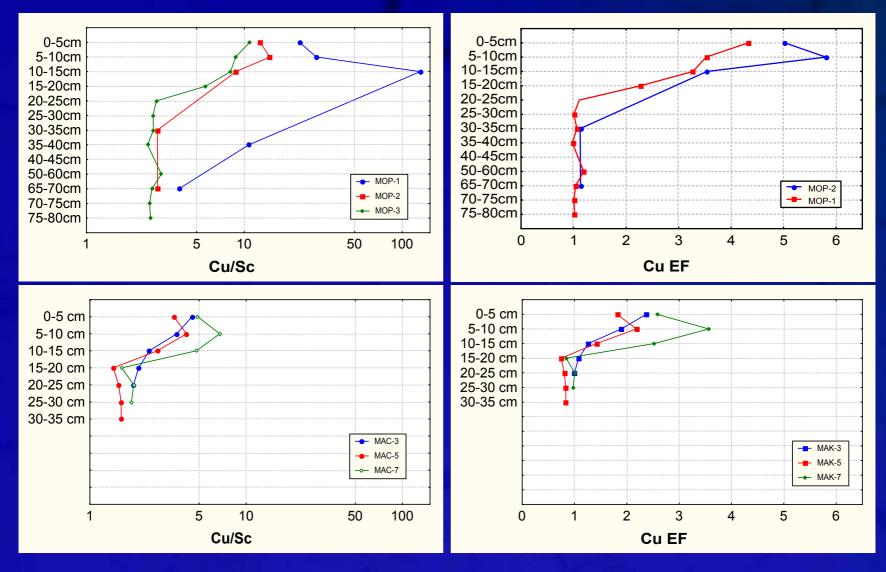
Sediment sampling (cores)

SedNet Conference

Heavy metals in the ash core (composite samples)

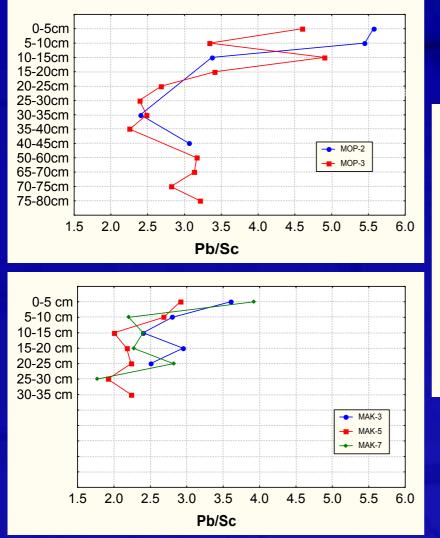
Мо	Cu	Plo	Zn	Ni	Со	Mn
mg/kg	mg/kg	mg/kg	mg//kg	mg/kg	mg/kg	mg/kg
25.8	57/2	<mark>116</mark> 9	5033	142	17	1825
18	<mark>5</mark> 57	1196	5607	96	20	2120
15	<mark>71</mark> 7	1031	6610	137	21	1460
	Ca	Cr	W	Si	Ag	Au
mg/kg	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
<mark>3</mark>	18	352	4	149	<mark>6.3</mark>	0,06
13.3	15.7	1048	7	<mark>113</mark>	2.2	0,37
	15.4	264	1.7	234	<mark>2</mark> ,2	0,09
	mg/kg 25.8 18 15 15 Cd mg/kg 3 4 18.3	mg/kg mg/kg 25.8 57/2 18 557 15 7/17 Cd Ca mg/kg % 3.4 18 18.3 15.7	mg/kgmg/kgmg/kg25.85721169185571196157171031CdCaCrmg/kg%mg/kg3.41835218.315.71048	mg/kgmg/kgmg/kgmg/kg25.85721169503318557119656071571710316610CdCaCrWmg/kg%mg/kgmg/kg8.418352415.315.710487	mg/kgmg/kgmg/kgmg/kgmg/kg25.8572116950331421855711965607961571710316610137CdCaCrWSnmg/kg%mg/kgmg/kgmg/kg8.418352414918.315.710487113	mg/kgmg/kgmg/kgmg/kgmg/kgmg/kg25.8572116950331421718557119656079620157171031661013721CdCaCrWSnAgmg/kg%mg/kgmg/kgmg/kgmg/kg8.441835241496.318.315.7104871132.2

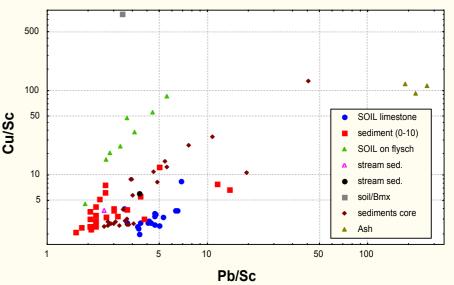
SedNet Conference


Heavy metals in soils and sediments

	Mo					Со
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ng/kg
Soils on limestone	2,5	38,7	55	127,7	70,6	19,1
Sediment (0-15cm) (previous study	10,5				58,1	7,9
by Dolenec et al.)						
Soils vineyards	0,6	242,6	23	94,6	69,3	13,0
Stream sediments (Dabar r.)	0,5				54,0	13,0
Soil with BM	0,6	4028,8	15	89,0	57,5	9,0
Sediments fom cores	10,8	71,4		121,8	68,4	11,6
Ash core	19,6	615,3	1132	5750,0	124,7	19,3

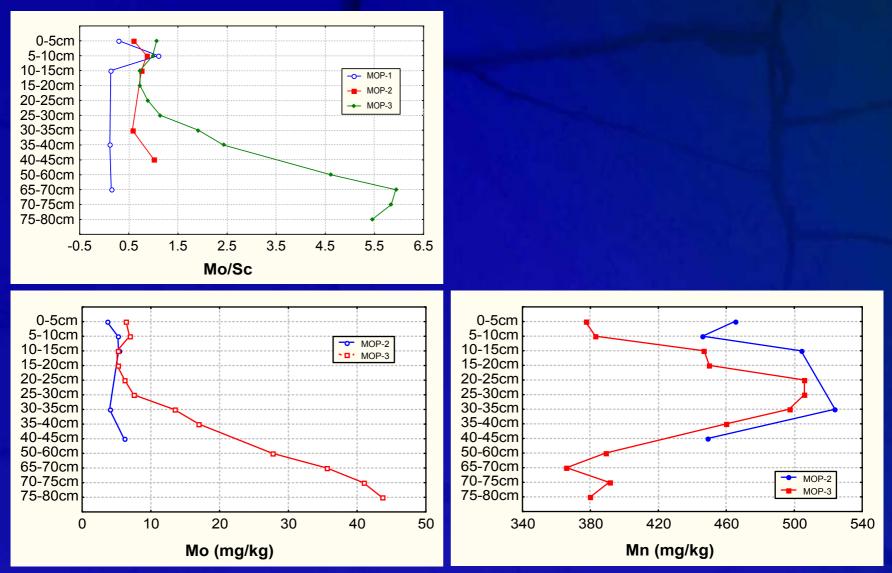
SedNet Conference


Copper in cores from Morinje and Makirina bays



SedNet Conference

Lead in cores from Morinje and Makirina bays



Sed Net

SedNet Conference

Molybdenum in cores from Morinje bay

SedNet Conference

Sec Net

Conclusions

The variation of mineralogy, geochemistry and organic matter within the peloids is dependent on numerous factors which include geology, soil, hydrogeology, of the watershed supplying freshwater to the bay.

Since their features are a result of a fragile balance of all these factors anthropogenic influences on these environments can greatly impact the sediments and alter their balneotherapic properties.

Further studies on the mechanisms of transfer of chemical compounds to the organisms via skin from sediments is required in order to develop trigger values which may differ considerable from present threshold vales for contaminated sediments

SedNet Conference

SedNet Conference

Acknowledgements

Croatian Ministry of Science

SedNet Conference