The Benefits of Using Dredged Material in Aquatic Systems

Lindsay Murray Cefas, UK SedNet, Venice November 2006

The importance of sediments

- Sediments form an essential and integral part of riverine and estuarial systems
- Hydro-morphological regime of tidal rivers and estuaries is dependent on sediments
- Erosion, transport and sedimentation are continual processes
- Sediments are essential to support the plant and animal life of these water bodies

The need for dredging

- Dredging to maintain navigable waterways and in relation to new developments, is essential for the economy
- Need to increase navigable depths to meet increases in size and draft of vessels
- Range of management options for dredged material

How can dredged material best be used to benefit the environment?

Consequences of Dredging

- Sediment is removed from the aquatic system, dynamic equilibrium is disturbed
- To re-establish equilibrium sediment may be transported in from the sea, or from rivers, or drawn from intertidal areas.
- Change of cross sectional area of an estuary can change the way a tidal wave propagates- increase or decrease intertidal exposure
- At the same time, in some areas loss of wetlands is occurring due to many factors quite unrelated to dredging, such as sea level rise.

Using Dredged Material

- PIANC WG 14, on 'The Beneficial Use of Dredged Material, Options and Constraints' will report in 2007
- Main findings, there are a range of possible uses of dredged material, some of which are of direct benefit to the environment.
- Recognize the value of sediments and treat dredged material as a resource rather than a waste

Dredged sand from Poole Harbour channels and approaches being used to replenish beach at Swanage, winter 2005/6

1.65 million tonnes

F. F. J. K. Wash

Case Study 1.

Harwich Haven

•SSSI

•SPA

•Ramsar

⁷ Cefas

Harwich Haven

- Approach Channel Deepening (1998-2000)
- Port of Felixstowe
- Capital dredge to improve navigation
- -12.5m CD to -14.5m CD
- 18Mm³ of material
- Subsequent port development projects e.g. Trinity III Terminal.

Channel Deepening - Effects on hydraulic and sedimentary regime

- Increase in intertidal erosion
 - Approx. 2.5ha yr ⁻¹
 - Muddy material trapped in deepened channel.
 - Maintenance dredging result in fine material being lost from the estuary system.
- Decrease in tidal range Compensation
 Decrease in exposure of approx. 4ha intertidal area.

Mitigation

Mitigation Solutions

- Sediment
 Replacement
 - Subtidal placement of fine material
 - Water column recharge

Compensatory Measures

 Compensating for 4ha of unmitigable 'loss' of intertidal

Managed Realignment – Creation of 16.5 ha of additional intertidal area

Beneficial use schemes

Habitat enhancement schemes

 Higher ecological value intertidal habitat
 Increased stability of flood defences

Case Study 2.

Humber

Immingham Outer Harbour

- Roll-on Roll-off terminal

 5 berth Ro/Ro tidal harbour
- Capital dredge 2.7Mm³
- Maintenance dredge 600,000m³

- EIA, Appropriate Assessment
- Direct loss of 22ha of intertidal area

Mitigation/Compensation Solutions

- Beneficial use disposal sites
 - Redistribute sediment to provide an increased supply to intertidal areas
 - Positive benefit to estuary system
- Habitat enhancement

 Doig's Creek
- Managed realignment schemes

 Chowder Ness & Welwick

Disposal Site Locations used for Immingham Outer Harbour

Case study 3. Wetland Creation, Wallasea, UK

An area of marine wetlands, internationally important for birds, left out of SPA to allow port development, had to be replaced.

Replacing Marine Wetland

- Managed realignment-involved the breaching of an existing seawall to allow tide back onto its old flood plain
- Wallasea chosen as preferred site after consultation with specialists and the public.
- Flood protection of Wallasea also needed to be ensured.
- To achieve the right mix of salt-marsh, saline lagoons and artificial islands, material was required to build up the site prior to breach.
- Solution -Use dredged material from the Port of Harwich

Implications for River Basin Management Planning under WFD

- Recognise and accommodate the important role of sediments in estuarine and coastal systems
- Need to ensure potential conflicts with sediment management regimes under EU Birds & Habitats Directives are avoided
- Recognise and accommodate the effects of activities such as maintenance dredging, and the beneficial use of dredged material in setting GEP targets
- Need to balance the nature conservation desirability of retaining dredged sediment within the system with the requirement to meet achieve good ecological and chemical status.

Conclusions

- There are opportunities to meet both economic and environmental requirements by the careful re-use of dredged sediments
- Failure to grasp these opportunities will be damaging, not only to the economy, but to the environment which is central to the aims of WFD

Thank you for your attention!

Ed Chind Ebel us & Hall