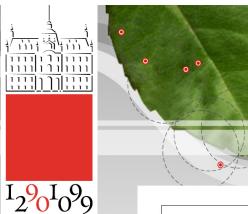
University of Ljubljana Faculty *of Civil and Geodetic Engineering*

SUSTAINABLE SEDIMENT MANAGEMENT Practical Training Course October 17, 2012, Zagreb, Croatia

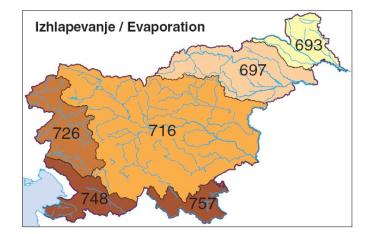
¹2⁹0¹0⁹9

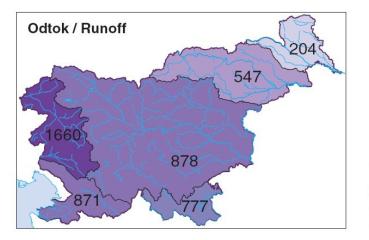
SEDIMENT STATUS SLOVENIA

Matjaž Mikoš


University of Ljubljana, FGG Ljubljana, Slovenia E-mail: matjaz.mikos@fgg.uni-lj.si

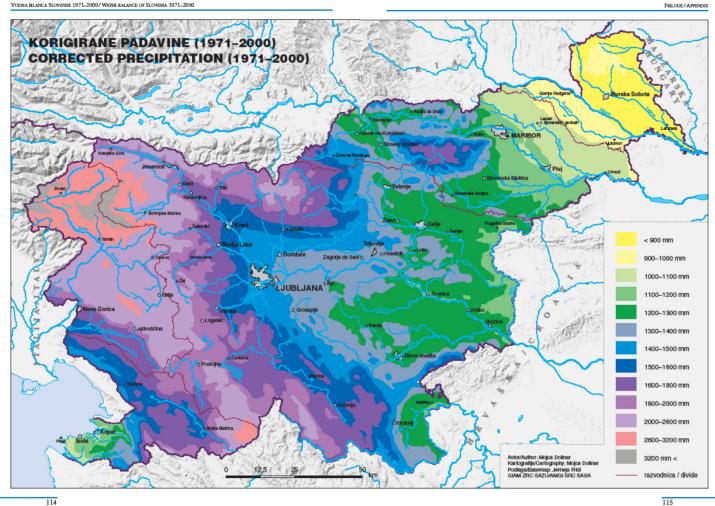
Outline


GOALS - Addressing 3 issues in Slovenia:

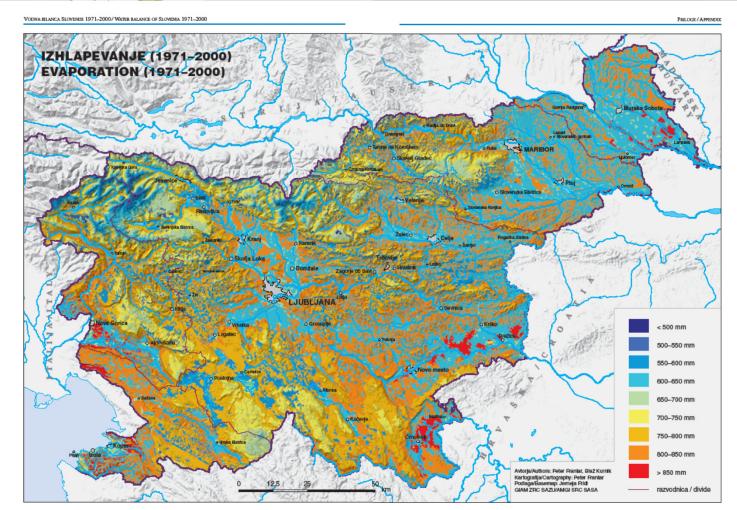

- Sediment balance throughout the Sava river system
- Sediment monitoring
- Evaluation of sediment quality and quantity
 STEPS –
- Water balance of the Republic of Slovenia
- General on monitoring
- Water quality (programme, results)
- Hydrologic monitoring (theory, research, methods, results)
- Sediment balance
- Conclusions

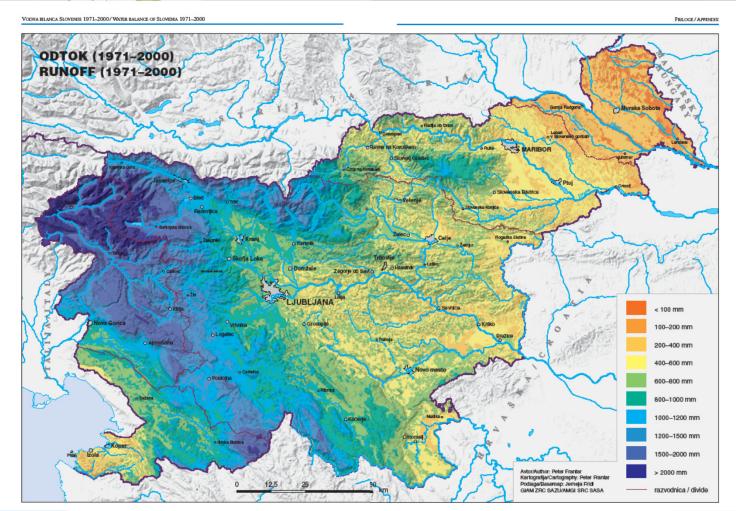
Water balance 1971-2000

Padavine / Precipitation 897 1244 2386 1594 1619 1534



Slika 69: Elementi vodne bilance (padavine, izhlapevanje in odtok) na ozemlju Slovenije po porečjih v mm


Figure 69: Elements of the water balance in the teritory of Slovenia (precipitation, evaporation and runoff) by river basins in mm



I₂90I099

 $I_2 9_0 I_0 9_9$

1_ <u>0</u> _	10
$^{-2'0'}$	* 0′9

าปะเม

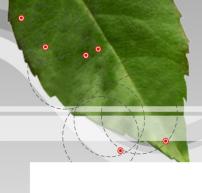
|<u>1111|1</u> |1111|1

	1961-1990	1971–2000
Padavine <i>Precipitation</i>	1567 mm	1579 mm
Izhlapevanje <i>Evaporation</i>	650 mm	717mm
Odtok – izračunan (Q = P – E) Runoff – calculated according to the equation $Q = P - E$	917 mm	862 mm
Odtočni količnik <i>Runoff coefficient</i>	58,5 %	54,5 %

Preglednica 8: Vodna bilanca – primerjava obdobij (vir obdobja 1961–90: Kolbezen et al., 1998) za ozemlje Republike Slovenije

Table 8: The water balance – a comparison of periods (source for the 1961–90 period: Kolbezen et al., 1998) for the territory of the Republic of Slovenia

Monitoring – general I


¹2⁹0¹0⁹9 State monitoring on waters is operated by the ARSO (Slovenian Environment Agency: <u>www.arso.si</u>) – now part of the Ministry of Agriculture and the Environment.

Monitoring of waters in RS can be divided into:

- Water quality monitoring of the sea and surface waters such as rivers, lakes, and water quality in protected areas: water for human consumption, bathing waters, for fish life & shellfish waters; groundwater.
- Hydrological monitoring in water stations on running waters, of groundwater and sea.

I₂90I099

Monitoring - general II

REPUBLIKA SLOVENIJA MINISTRSTVO ZA OKOLJE IN PROSTOR AGENCIJA REPUBLIKE SLOVENIJE ZA OKOLJE

PROGRAM MONITORINGA STANJA VODA ZA OBDOBJE 2010 – 2015 REPUBLIKA SLOVENIJA
 MINISTRSTVO ZA OKOLJE IN PROSTOR
 AGENCIJA REPUBLIKE SLOVENIJE ZA OKOLJE

PROGRAM HIDROLOŠKEGA MONITORINGA POVRŠINSKIH VODA ZA LETO 2012

Ljubljana, december 2011

Water quality I

¹2⁹0¹0⁹9 In 2000 the European Union adopted the Water Framework Directive, which gives the Member States a legal and professional basis for an integrated approach to water protection and management.

> The main objective of the Water Framework Directive is to achieve a good chemical and ecological status of all waters by 2015.

> For the evaluation of water quality, the Water Framework Directive in Article 8 requests the introduction of surface and groundwater monitoring programmes.

> The monitoring of water quality in Slovenia has a long tradition, but in 2007, it was carried out according to the requirements of the Water Framework Directive for the first time.

Water quality II

12901099 In 2003, two basic administrative units were designated for the purpose of the WFD and river basin management: the Danube river basin district and the Adriatic river basin district.

> According to ecological characteristics, the territory of Slovenia was classified into four hydroecoregions, and additionally divided more precisely into bioregions and types.

> Water bodies are base units for the assessment of water status according to environmental objectives. In surface waters, 155 water bodies were determined in Slovenia (110 in the Danube and 25 in the Adriatic river basin district).

> In 2007, monitoring was established in all the above mentioned water bodies, as required by the WFD.

Water quality III

12901099 An essential novelty of the monitoring is evaluation of the ecological status.

> The assessment of the ecological status is based on biological quality elements (phytoplankton, phytobenthos and macrophytes, fish and benthic invertebrate fauna) and on hydromorphological, chemical and physico-chemical elements supporting the biological elements.

The ecological status is divided into 5 quality classes.

The first assessments of the chemical and ecological status in accordance with the requirements of the WFD for the purpose of river basin management plans, was carried out in 2009. It includes quality monitoring of rivers, lakes, sea, groundwater, and water in protected areas.

Water quality IV

12901099 The chemical status of rivers must be determined for:

- any river or its part where the catchment area reaches 2500 km²,
- any water body that is substantially polluted by one or more parameters from the priority or indicative list of parameters,
- any water body into which waste waters containing priority substances are discharged,
- water bodies crossed by the state border.

According to the Regulation on the chemical status of surface waters, physico-chemical parameters must be measured at all monitoring sites. Priority substances are measured at all basic monitoring sites & regularly parameters of increased pollution are measured at all basic and additional monitoring sites.

Water quality V

I₂90I099

Table 1: Limit values of parameters for the evaluation of the chemical status as listed in the Regulation on the chemical status of surface waters (7)

GENERAL PHYSICO-CHEMICAL PARAMETERS

PARAMETER	UNIT	LIMIT VALUE		
FARAMETER	UNIT	water	sediment analysis	
Nitrate	mg NO ₃ /L	25		
Sulphate	mg SO₄/L	150		

PRIORIT	Y LIST OF CHEMICAL STAT	US PARAMETERS		
PARAMETER	UNIT	LIMIT VALUE		
PARAMETER	UNIT	water	sediment analysis	
Cadmium	μg Cd/L	1	yes	
1,2 dichloroethane	μg/L	10		
Hexachlorobenzene	μg/L	0.03	yes	
Hexachlorobutadiene	μg/L	0.1	yes	
Hexachlorocyclohexane	μg/L	0.05	yes	
Pentachlorophenol	μg/L	1	yes	
Mercury	μg Hg/L	1	yes	
Tetrachloroethene	μg/L	10		
Trichlorobenzene	μg/L	0.4	yes	
Trichloroethene	μg/L	10		
Trichloromethane	μg/L	12		

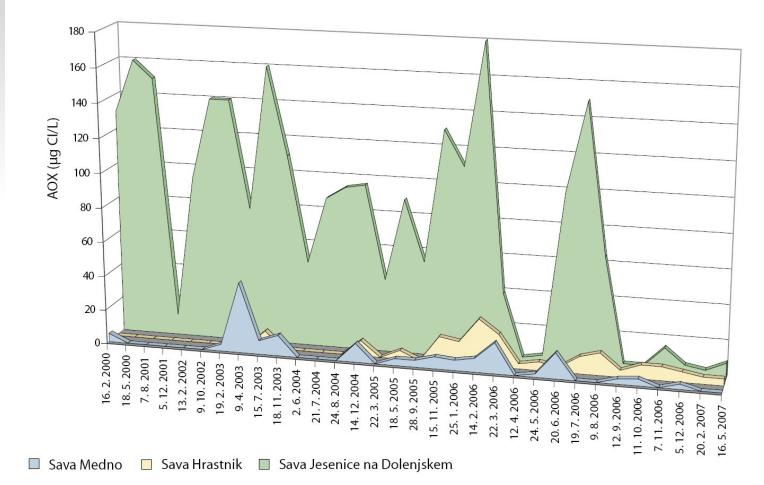
Water quality VI

I290I099

111

II	IDICATIVE LIST OF PARAN	NETERS		
	LINUT	LIMIT VALUE		
PARAMETER	UNIT	water	sediment analysis	
Copper	μg Cu/L	5		
Boron	μg B/L	100		
Zinc	μg Zn/L	100		
Chromium	μg Cr/L	10		
Nickel	μg Ni/L	10		
Lead	µg Pb/L	10		
Dichloromethane	μg/L	10		
Alachlor	μg/L	0.1		
Metolachlor	μg/L	0.1 0.1		
Atrazine	μg/L			
Simazine	μg/L	0.1		
Total pesticides	μg/L	0.5		
Anthracene	μg/L	0.05		
Naphthalene	µg/L	1		
РАН	μg/L	0.1		
Fluoranthene	µg/L	0.025		
Benzene	μg/L	3.0		
РСВ	µg/L	0.01		
AOX	μg Cl/L	20		
EOX	mg Cl/kg	-	yes	
Phenol substances (phenol index)	µg/L	10		
Mineral oils	mg /L	0.05		
Anion active detergents	mg MBAS/L	0.10		

PAH: Polycyclic aromatic hydrocarbons **PCB:** Polychlorinated biphenyls


AOX: Adsorbable organic halogen compounds **EOX:** Extractable organic halogen compounds

Water quality VII

1111

Chart 2: AOX concentrations in the Sava river in the years 2000 to 2007

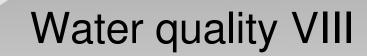
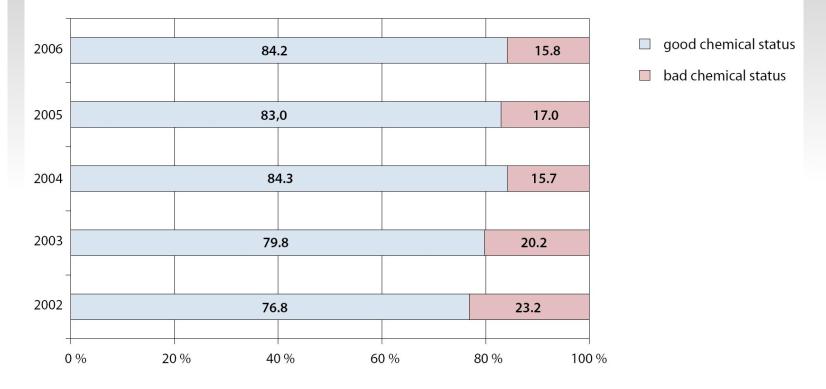



Chart 3: Percentage of monitoring sites in good and bad chemical status in the years 2002 to 2006

I₂90I099

Bad chemical status Good chemical status The monitoring site was not included in the monitoring programme AOX: Adsorbable organic halogen compounds FS: Phenol substances MO: Mineral oils PCB: Polychlorinated biphenyls det: Anion active detergents metol.: Metolachlor pest.: Pestlicides Cu: Copper Ni: Nickel Zn: Zinc Pb: Lead Cd: Cadmium Hg: Mercury B: Boron in sed.: Upward trend in sediment

Water quality IX

Table 3: The chemical status of rivers in the years 2002 to 2006

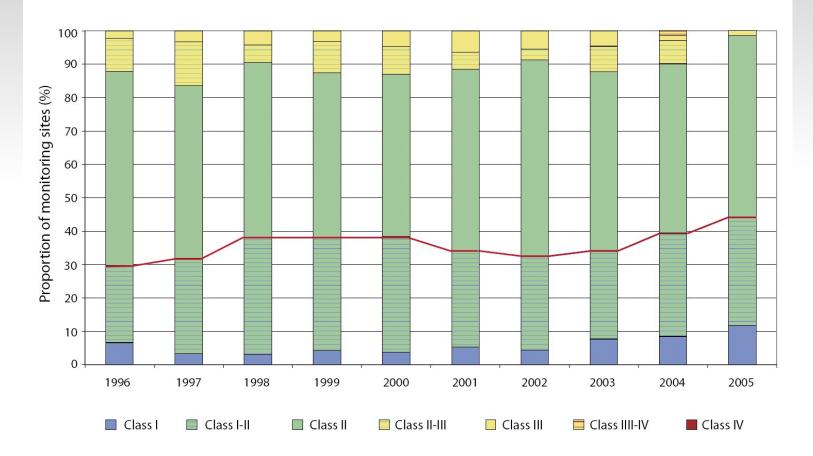
RIVER	Monitoring Site	2002	2003	2004	2005	2006
SAVA	Otoče	good	good	good	good	good
SAVA	Prebačevo	good	good	good	good	good
SAVA	Medno	Hg in sed.	good	good	good	good
SAVA	Šentjakob	good	good	good	good	
SAVA	Dolsko	good	AOX	good	good	
SAVA	Litija	good	good	good	good	
SAVA	Kresnice					good
SAVA	Suhadol (Hrastnik)	Hg in sed.	good	good	good	good
SAVA	Radeče nad Sopoto	good	good			
SAVA	Boštanj	good	good	good	good	good
SAVA	Brežice	AOX, atrazine, metol., FS	FS, AOX	FS, AOX	AOX, FS	
SAVA	Jesenice na Dolenjskem	AOX, atrazine, metol.	AOX, Cd in sed.	AOX	AOX	AOX
TRŽIŠKA BISTRICA	Podbrezje	Cu	good	good	FS	good
Kokra	Kranj	good	good	good	good	good
Sora	Medvode	good	good	good	good	good
KAMNIŠKA BISTRICA	source	good	good	good	good	good
KAMNIŠKA BISTRICA	Beričevo	AOX, FS, Cd, Hg in sed.	Cu, FS, AOX	FS, AOX	metol.	good
MIRNA	Boštanj	good	good	good	good	good
SOTLA	Rogaška Slatina	Pb	Pb, AOX, Cd in sed.	Pb	metol., FS	В
SOTLA	Rakovec	good	AOX	good	FS	good
Kolpa	Osilnica	good	good	good	good	good
Kolpa	Petrina	good	good			

Water quality X

I₂90I099

ii

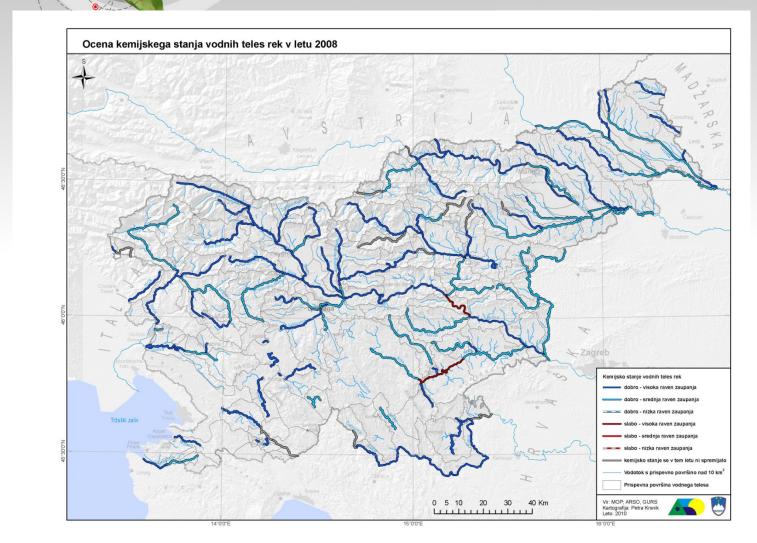
Table 4: Quality classes according to the saprobic index value


Quality class	SI value	Saprobic level	River quality description
1	1.0 - 1.5	oligosaprobic	uncharged to very little charged
1-2	1.51- 1.8	oligosaprobic to betamesosaprobic	little charged
2	1.81- 2.3	betamesosaprobic	moderately charged
2-3	2.31-2.7	betamesosaprobic to alfamesosaprobic	critically charged
3	2.71-3.2	alfamesosaprobic	heavily polluted
3-4	3.21- 3.5	alfamesosaprobic to polysaprobic	very heavily polluted
4	3.51- 4.0	polysaprobic	excessively polluted

Water quality XI

 $\left|\frac{1}{1}\right|$

Chart 4: The saprobic status of rivers – the proportion of monitoring sites in a specific quality class in the years 1996 to 2005

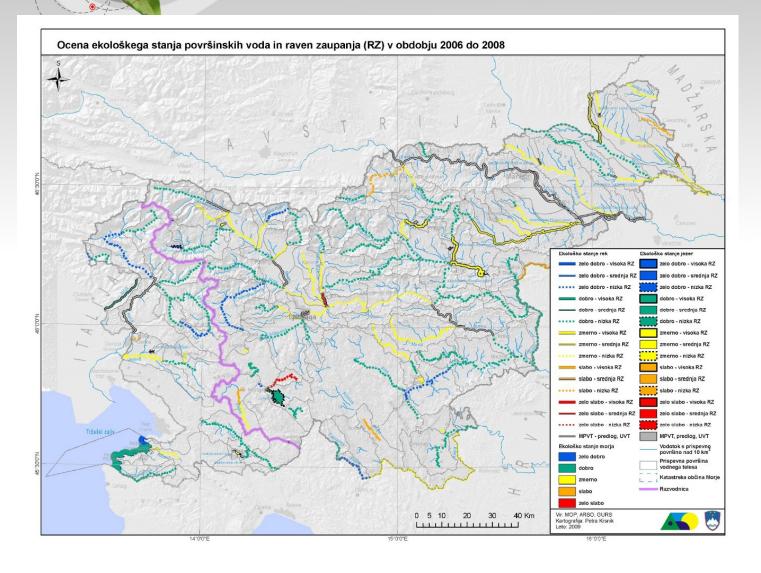


Chemical status of water bodies on rivers in 2008

1111

I₂90I099

Water quality XII


Ecological status of surface waters and confidence level 2006-2008

Water quality XIII

 $I_{290}I_{099}$

11

 $\frac{1}{1}$

Chemical status of water bodies on rivers and confidence level 2006-2008

Water quality XIV

 $I_2 9_0 I_0 9_9$

Kemijsko stanje vodnih teles rek v obdobju 2006-2008

Šifra VT	Ime vodnega telesa	Kemijsko stanje 2006-2008	Raven zaupanja ocene
SI43VT10	VT Mura Ceršak – Petanjci	dobro	visoka
SI43VT30	VT Kučnica Mura Petanjci – Gibina	dobro	visoka
SI43VT50	VT Mura Gibina – Podturen	dobro	srednja
SI432VT	VT Kučnica	dobro	visoka
SI434VT51 SI434VT9	VT Ščavnica povirje – zadrževalnik Gajševsko jezero	dobro	visoka
SI434VT9 SI442VT11	VT Ščavnica zadrževalnik Gajševsko jezero – Gibina VT Ledava državna meja – zadrževalnik Ledavsko jezero	dobro dobro	srednja visoka
SI442VT91		dobro	srednja ^P
SI442VT91 SI442VT92	VT Ledava zadrževalnik Ledavsko jezero – sotočje z Veliko Krko VT Ledava mejni odsek	dobro	visoka
SI4426VT1	VT Kobiljanski potok povirje – državna meja	dobro	visoka
SI4426VT2	VT Kobiljanski potok državna meja – Ledava	dobro	visoka
SI441VT	VT Velika Krka povirje – državna meja	dobro	visoka
SI3VT197	kMPVT Drava mejni odsek z Avstrijo	dobro	visoka
SI3VT359	kMPVT Drava Dravograd – Maribor	dobro	visoka
SI3VT5171	kMPVT Drava Maribor – Ptuj	dobro	visoka
SI35172VT	UVT Kanal HE Zlatoličje	dobro	srednja ^P
SI378VT	UVT Kanal HE Formin	dobro	srednja
SI3VT930	kMPVT Drava Ptuj – Ormož	dobro	visoka
SI3VT970	kMPVT Drava zadrževalnik Ormoško jezero – Središče ob Dravi	dobro	srednja ^P
SI32VT11	VT Meža povirje – Črna na Koroškem	dobro	visoka
SI32VT30	VT Meža Črna na Koroškem – Dravograd	dobro	srednja
SI322VT3	VT Mislinja povirje – Slovenj Gradec	dobro	visoka
SI322VT7	VT Mislinja Slovenj Gradec – Otiški vrh	dobro	srednja
SI332VT3	VT Mutska Bistrica	dobro	visoka
SI36VT15	VT Dravinja povirje – Zreče	dobro	visoka
SI36VT90	VT Dravinja Zreče – Videm	dobro	srednja ^P
SI364VT1	VT Ložnica povirje – Slovenska Bistrica	dobro dobro	visoka
SI364VT7	VT Ložnica Slovenska Bistrica – Pečke		visoka
SI368VT9	VT Polskava Zgornja Polskava – Tržec	dobro dobro	srednja ^P visoka
SI38VT33	VT Pesnica državna meja – zadrževalnik Perniško jezero		
SI38VT90 SI111VT5	VT Pesnica zadrževalnik Perniško jezero – Ormož VT Sava izvir – Hrušica	dobro	srednja ^P
SI111V15 SI111VT7	kMPVT zadrževalnik HE Moste	dobro dobro	visoka visoka
SI1118VT	VT Radovna	dobro	visoka
SI112VT7	VT Sava Sveti Janez – Jezernica	dobro	visoka
SI112VT9	VT Sava Jezernica – sotočje s Savo Dolinko	dobro	visoka
SI1VT137	VT Sava HE Moste – Podbrezje	dobro	srednja ^P
SI1VT150	VT Sava Podbrezje – Kranj	dobro	srednja ^P
SI1VT170	kMPVT Sava Mavčiče – Medvode	dobro	visoka
SI1VT310	VT Sava Medvode – Podgrad	dobro	visoka
SI1VT519	VT Sava Podgrad – Litija	dobro	visoka
SI1VT557	VT Sava Litija – Zidani Most	dobro	visoka
SI1VT713	kMPVT Sava Vrhovo – Boštanj	siabo	visoka
SI1VT739	VT Sava Boštanj – Krško	dobro	srednja ^P
SI1VT913	VT Sava Krško – Vrbina	dobro	srednja ^P
SI1VT930	VT Sava mejni odsek	dobro	visoka
SI114VT3	VT Tržiška Bistrica povirje – sotočje z Lomščico	dobro	visoka
SI114VT9	VT Tržiška Bistrica sotočje z Lomščico – Podbrezje	dobro	srednja ^P
SI116VT5	VT Kokra Jezersko – Preddvor	dobro	visoka
SI116VT7	VT Kokra Preddvor – Kranj	dobro	srednja ^P
SI123VT	VT Sora	dobro	srednja ^P
SI121VT	VT Poljanska Sora	dobro	srednja
SI122VT	VT Selška Sora	dobro	srednja
SI132VT1	VT Kamniška Bistrica povirje – Stahovica	dobro	visoka
SI132VT5	VT Kamniška Bistrica Stahovica – Študa	dobro	visoka
SI132VT7	VT Kamniška Bistrica Študa – Dol	dobro	srednja
SI1324VT	VT Rača z Radomljo	dobro	visoka
SI1326VT	VT Pšata	dobro	visoka
SI172VT	VT Mirna	dobro	srednja
SI192VT1 SI192VT5	VT Sotla Dobovec – Podčetrtek	dobro	srednja
SI192V15 SI1922VT	VT Sotla Podčetrtek – Ključ VT Mestinjščica	dobro dobro	visoka
			srednja
SI1924VT1	VT Bistrica povirje – Lesično	dobro	srednja
SI1924VT2	VT Bistrica Lesično – Polje	dobro dobro	srednja
SI21VT13 SI21VT50	VT Kolpa Osilnica – Petrina VT Kolpa Petrina – Primostek	dobro dobro	visoka visoka
SI21V150 SI21VT70	VT Kolpa Petrina – Primostek VT Kolpa Primostek – Kamanje	dobro	visoka
SI21112VT	VT Čabranka	dobro	visoka
SI21332VT	VT Rinža	dobro	visoka
SI216VT	VT Lahinja	dobro	visoka

Šifra VT	Ime vodnega telesa	Kemijsko stanje 2006-2008	Raven zaupanja ocene
SI14VT77	VT Ljubljanica povirje – Ljubljana	dobro	srednja ^P
SI14VT93	kMPVT Mestna Ljubljanica	dobro	srednja
SI14912VT SI14VT97	UVT Gruberjev prekop	dobro	visoka
SI14V197 SI1476VT	VT Ljubljanica Moste – Podgrad VT Iščica	dobro	visoka
SI1476VT SI148VT5	VT Iscica VT Mali Graben z Gradaščico	dobro	srednja ^P srednja
SI148VT5 SI148VT3	VT Gradaščica z Veliko Božno	dobro	visoka
SI141VT1	VT Jezerski Obrh	dobro	srednja ^P
SI141VT2	VTJ Cerkniško jezero	dobro	srednja ^P
SI141012	VT Gerkniščica	dobro	visoka
SI143VT	VT Bak	dobro	visoka
SI144VT1	VT Pivka povirje – Prestranek	dobro	visoka
SI144VT2	VT Pivka Prestranek – Postojnska jama	dobro	srednja
SI145VT	VT Unica	dobro	visoka
SI146VT	VT Logaščica		
SI146VT	VT Logaščica	dobro	visoka
SI16VT17 SI16VT70	VT Savinja povirje – Letuš VT Savinja Letuš – Celje	dobro	srednja srednja ^P
SI16VT70 SI16VT97	VT Savinja Letus – Celle VT Savinja Celje – Zidani Most	dobro	visoka
SI1616VT	VT Dreta	dobro	visoka
SI162VT3	VT Paka povirje – Velenje	dobro	visoka
SI162VT7	VT Paka Velenje – Skorno	dobro	srednia
SI162VT9	VT Paka Skorno – Šmartno	dobro	srednja ^P
SI164VT3	VT Bolska Trojane – Kapla	dobro	srednja ^P
SI164VT7	VT Bolska Kapla – Latkova vas	dobro	srednja ^P
SI168VT9	VT Voglajna zadrževalnik Slivniško jezero – Celje	dobro	srednja ^P
SI1688VT1	VT Hudinja povirje – Nova Cerkev	dobro	visoka
SI1688VT2	VT Hudinja Nova Cerkev – sotočje z Voglajno	dobro	srednja
SI1696VT	VT Gračnica	dobro	srednia
SI18VT31	VT Krka povirje – Soteska	dobro	srednja
SI18VT77	VT Krka Soteska – Otočec	slabo	visoka
SI18VT97	VT Krka Otočec – Brežice	dobro	visoka
SI184VT2	VT Radeščica	dobro	visoka
SI184VT1 SI186VT3	VT Črmošnjičica VT Temenica I	dobro	visoka
SI186VT3 SI186VT5			srednja
	VT Temenica II	dobro	srednja ^P
SI188VT5 SI188VT7	VT Radulja povirje – Klevevž VT Radulja Klevevž – Dobrava pri Škocjanu	dobro	srednja ^P
SI186VT7	VT Radulja Klevevz – Dobrava pri Skocjanu VT Prečna	dobro dobro	visoka visoka
SI332VT1	VT Mutska Bistrica mejni odsek z Avstrijo	dobro	visoka
SI368VT5	VT Polskava povirje-Zgornja Polskava	dobro	visoka
SI6VT119	VT Soča povirje – Bovec	dobro	visoka
SI6VT157	VT Soča Bovec – Tolmin	dobro	srednja
SI6VT330	kMPVT Soča Soške elektrarne	dobro	visoka
SI62VT13	VT Idrijca povirje – Podroteja	dobro	visoka
SI62VT70 SI626VT	VT Idrijca Podroteja – sotočje z Bačo	dobro	srednja visoka
SI626VT	VT Trebuščica VT Bača	dobro dobro	visoka visoka
SI6354VT	VT Baca VT Koren	dobro	srednja
SI64VT57	VT Vipava povirje – Brje	dobro	srednja ^P
SI64VT90	VT Vipava povinje – Bije VT Vipava Brie – Miren	dobro	visoka
SI644VT	VT Hubeli	dobro	visoka
SI681VT	VT Idrija	dobro	visoka
SI66VT101	VT Nadiža mejni odsek	dobro	visoka
SI66VT102	VT Nadiža mejni odsek – Robič	dobro	visoka
SI52VT11	VT Reka mejni odsek - Koseze	dobro	visoka
SI52VT15	VT Reka Koseze – Bridovec	dobro	srednja ^P
SI52VT19	VT Reka Bridovec – Škocjanske jame	dobro	visoka
	VT Molja	dobro	srednja
		dobro	srednja ^P
SI518VT3	VT Rižana povirje – izliv		
SI518VT3 SI512VT3	VT Dragonja Brič – Krkavče	dobro	srednja ^P
SI5212VT4 SI518VT3 SI512VT3 SI512VT51	VT Dragonja Brič – Krkavče VT Dragonja Krkavče – Podkaštel	dobro	visoka
SI518VT3 SI512VT3 SI512VT51 SI512VT11	VT Dragonja Brič – Krkavče VT Dragonja Krkavče – Podkaštel VT Dragonja povirje-Topolovec	dobro dobro	visoka srednja ^p
SI518VT3 SI512VT3 SI512VT51	VT Dragonja Brič – Krkavče VT Dragonja Krkavče – Podkaštel	dobro	visoka

LEGENDA

VT - vodno telo

kMPVT - kandidat za mocno preoblikovano vodno telo UVT - umetno vodno telo

srednja⁷ - v primeru, da je bila oceni kemijskega stanja dodeljena srednja stopnja zaupanja samo zaradi pogostosti vzorcevanja pesticidov, je dodana oznaka P

Classes of ecological status of surface waters in 2011

Water quality XV

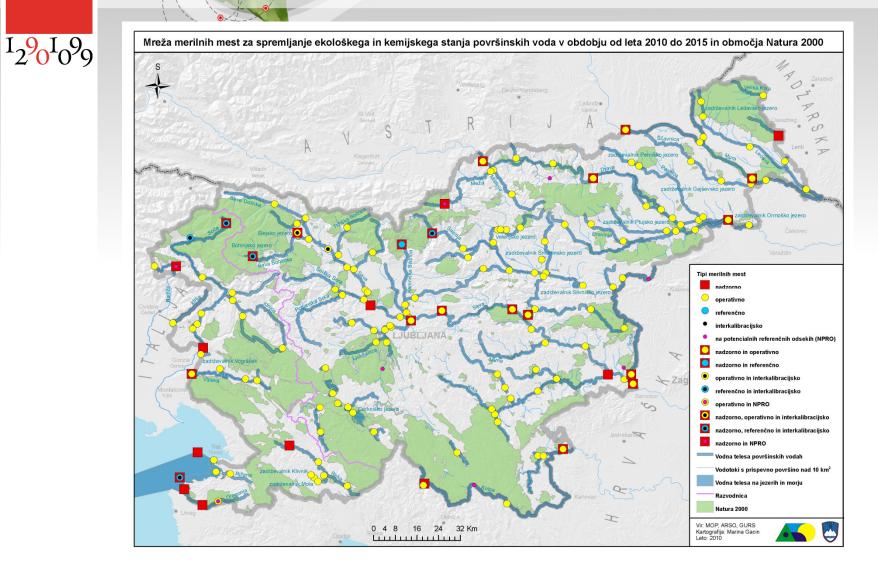
าปปะบ

1111

Preglednica: Razvrščanje vzorčnih mest v razrede ekološkega stanja po modulih za leto 2011

Ekološko stanje površinskih voda se ocenjuje glede na kakovost in sestavo biološke združbe in se razvršča v pet razredov kakovosti; zelo dobro, dobro, zmerno, slabo in zelo slabo. Razvrščanje vzorčnih mest v ekološko stanje za leto 2011 je podano po modulih, brez končnega stanja ter brez ravni zaupanja. Končno stanje s pripadajočo ravnijo zaupanja bo podano za vodno telo za načrt upravljanja z vodami 2009-2014.

Podrobneje o vrednotenju ekološkega stanja: http://www.mko.gov.si/si/delovna podrocja/voda/ekolosko stanje povrsinskih voda/


http://www.arso.gov.si/vode/poro%C4%8Dila%20in%20publikacije/vode%20v%20sloveniji.pdf

http://www.arso.gov.si/vode/poro%C4%8Dila%20in%20publikacije/Program%202010%20-%202015.pdf

			Saprobnost Trofičnost Spremenjenost		Trofičnost			
Reka	Vzorčno mesto	Bentoški nevretenčarji	Fitobentos in makrofiti	BPK5	Fitobentos in makrofiti	NO3	Bentoški nevretenčarji	Posebna onesnaževala
Dragonja	Planjave	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	DOBRO
Drava	Brezno	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO*	ZELO DOBRO	ZELO DOBRO*	ZMERNO	DOBRO*
Drava	Ruše	DOBRO	DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO SLABO	DOBRO
Drava	Krčevina pri Ptuju	ZELO DOBRO	DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZMERNO	DOBRO
Drava	Ranca	DOBRO	ZELO DOBRO	ZELO DOBRO*	ZELO DOBRO	ZELO DOBRO*	SLABO	DOBRO*
Drava	Borl	ZELO DOBRO	DOBRO	ZELO DOBRO	ZMERNO	DOBRO	DOBRO	DOBRO
Iška	lški vintgar	DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	DOBRO	-	DOBRO
Kamniška Bistrica	izvir	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	-	DOBRO
Kolpa	Osilnica	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	-	DOBRO
Kolpa	nad Bilpo	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	DOBRO	ZELO DOBRO		DOBRO
Koritnica	Kal	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZMERNO	DOBRO
Krka	Krška vas	ZELO DOBRO	DOBRO	ZELO DOBRO	DOBRO	DOBRO	DOBRO	DOBRO
Ljubljanica	Prule	ZELO DOBRO	ZMERNO	ZELO DOBRO	ZMERNO	ZELO DOBRO	ZMERNO	ZELO DOBRO
Ljubljanica	Moste (Bar pri podkvi)	ZELO DOBRO	DOBRO	ZELO DOBRO	ZMERNO	ZELO DOBRO	ZMERNO	ZELO DOBRO
Ljubljanica	Zalog	DOBRO	DOBRO	ZELO DOBRO	DOBRO	DOBRO	DOBRO	DOBRO
Mura	Ceršak	ZELO DOBRO	DOBRO	ZELO DOBRO	DOBRO	DOBRO	DOBRO	DOBRO
Mura	Mota	ZELO DOBRO	DOBRO	ZELO DOBRO	DOBRO	DOBRO	ZMERNO	DOBRO
Nadiža	Robič	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	ZELO DOBRO	-	DOBRO

Chemical & ecological status of waters network 2010-2015 and Natura 2000

Water quality XVI

¹2⁹0¹0⁹9

Water quality XVII

Lakes & reservoirs I

LAKES AND RESERVOIRS IN SLOVENIA

Lakes and Reservoirs in Slovenia, Table 2 An overview of some lakes and reservoirs in Slovenia, listed according to their area (Compiled from Gams, 1962; ES, 1990; Firbas 2001; SORS 2010)

Area (km²)

Depth (m)

Volume (10⁶ m³)

LAKES AND RESERVORS IN SLOVENIA

Lakes and Reservoirs in Slovenia, Table 1 Inventory of wetlands in Slovenia according to the Ramsar Classification System for Wetland Type (From ARSO, 2003, p. 48, after VGI, 2000)

Code	Wetland type	Area (ha) (> 0.15 ha) ^a	Number of all localities ^b
Marine an	d coastal wellands		
1	Coastal brackish/saline lagoons	74.99	4
Inland wet			
M	Permanent rivers/streams/creeks	61.77	61
N	Seasonal/intermittent/irregular rivers/streams/creeks	0	1
0	Permanent freshwater lakes (>8 ha)	456.69	2
P	Seasonal/intermittent freshwater lakes (>8 ha)	3,151.30	6
Tp	Permanent freshwater marshes/pools (<8 ha)	168.69	279
Ts	Seasonal/intermittent freshwater marshes/pools	2,959.55	171
U	Non-forested peatlands	102.81	17
Xf	Riparian meadows and forests on alluvial plains	6,184.30	28
Zg	Geothermal wetlands	0	2
Zk	Karst and other subterranean hydrological systems	305.00	1
Human-ma	ade wetlands		
1	Aquaculture ponds	225.31	312
2	Pends	134.38	1,517
4	Seasonally flooded agricultural land	18,079.60	304
5	Salt exploitation sites	662.38	2
6	Water storage areas	2,700.27	72
7	Excavations	363.44	584
8	Wastewater treatment areas	16.79	1
9	Canals and drainage channels, ditches	0	156
0	No data about type	3.07	6
Sum		35,650.34	3,526

⁶Only wellands with an area >0.15 ha contribute to the total area; the rest of them contribute only to the total number of localities b Does not take into account watercourses as such, only smaller wetlands along them

A. Natural lakes			
Cerkniško jezero (Lake Cerknica; intermittent kant lake)	26 ^a	3 ^b	76.0 ^a
Bohinjsko jezero (Lake Bohinj; subalnine glacial lake)	3.28	45°	92.5
Blejsko jezero (Lake Bled; glacial lake)	1.47	30*	25.7
Pal8ko jezero (intermittent karst lake)	1.25	15 ^b	10.0
Planinsko jezero (intermittent karst lake)	1.00	10"	40.0°
	0.74		
Petelinjsko jezero (intermittent karst lake)	0.012	47*	
Podpeško jezero (lake on a karst ponor)			
Divje jezero (lake on a karst spring)	0.0023	15 ^a	
Lakes Triglavska jezero (alpine glacial lakes):		-	
 Triglavsko jezero (Jezero pod Vršacem) 	0.0047	5 ^b	
2. Triglavsko jezero (Rjava mlaka)	0.012	10	
Triglavsko jezero (Zeleno jezero)	0.0041	2.5 ^b	
 Triglavsko jezero (Jezero v Ledvici) 	0.0237	15 ^a /5.7 ^b	0.135
Triglavsko jezero (Dvojno jezero)	0.005	8.5*	
6. Triglavsko jezero (Dvojno jezero)	0.004	5.5"	
7. Triglavsko jezero (Črno jezero)	0.0075	6 ^b	
Krnsko jezero (alpine glacial lake)	0.050	17.6 ^a	
Jezero na Planini pri Jezeru (alpine glacial lake)	0.0156	11*	
B. Reservoirs			
Ledavsko jezero (flood control, fisheries)	2.18	3 ^b	5.7
Perniško jezero (fisheries)	2.03	4.5 ^b	3.3
Velenjsko jezero (subsidence)	1.37	55°/20.2°	27.7
	1.07	10*	6.5
Smartinsko jezero (flood control, fisheries)	0.84	14.5"	4.0
Slivniško jezero (flood control, fisheries)	0.82	20	8.5
Vogrsko jezero (irrigation, fisheries)	0.77	10 ^a 3 ^b	2.6
Gajševsko jezero (flood control, irrigation, fishenies)			
Jezero Molja (flood control, low flows)	0.68	12*	4.3
Družmirsko jezero (subsidence)	0.55	72.8	12.0
Klivniško jezero (flood control, low flows)	0.35	14*	3.7
Skalsko jezero (subsidence)	0.20	21.0*	1.0
C. Drava river neservoirs"			
Phujsko jezero (1978 HPP Formin; 116 MW)	4.10	12	20.0
Ormoško jezero (1976 HPP Varaždin; 94 MW)	2.50°	9	
Vuhreško jezero (1956 HPP Vuhred; 72 MW)	2.41	23 ^a /5 ^b	11.2
Brestemiško jezero (1948 HPP Mariborski otok; 60 MW)	2.39	14.5 ^a /6 ^b	13.8
Vuzeniško jezero (1957 HPP Vuzenica; 56 MW)	1.96	10.8 /4	7.5
Ožbaltsko jezero (1960 HPP Ožbalt; 73 MW)	1.54	24.5°/7°	10.2
Dravograjsko jezero (1944 HPP Dravograd; 26 MW)	1.40	4 ^b	5.6
Fal8ko jezero (1918 HPP Fala; 58 MW)	0.90	14 ^a /5 ^b	4.4
D. Sava river reservoirs ^d			
Vrhovsko jezero (1993, HPP Vrhovo; 34 MW)	1.43	6ª	8.65
Trbojsko jezero (1986 HPP Mavčiče, 38 W)	1.00	17*	
Moščansko jezero (1952 HPP Moste; 21 MW)	0.69	50 [°] /12 ^b	8.0
Zbiljsko jezero (1954 HPP Medvode; 26 MW)	0.69	20%/3b	6.0
E. Soča river reservoirs ^d			1000 CD
Doblarsko jezero (1939 HPP Doblar; 30 MW & 2002 HE Doblar II; 40 MW)	0.42	32	6
Ajbsko jezero (1940 HPP Plave; 15 MW & 2002 HP Plave II; 20 MW)	0.30	12	1.1
jezero Kanalski vrh (2010 Pumped storage HPP Avče; 185 MW)	0.11	20	2.2
Solkansko jezero (1984 HPP Solkan; 31.5 MW)	0.08	18	1.2
Summary Jacov (1904 Her Solkal, 31.3 mm)	5.50	1.07	

*Maximum

Lake

A. Natural lakes

^bAverage

Slovenian-Croatian border crosses the lake In backets: year of construction, name of HPP, installed power of HPP

from Mikoš (2012d)

Water quality XVIII

¹2⁹0¹0⁹9

111

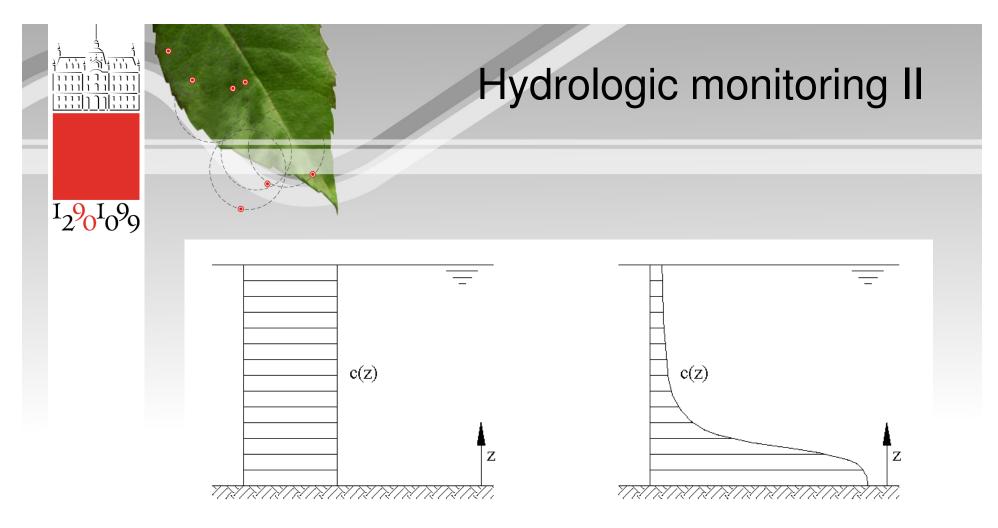
LAKES AND RESERVOIRS IN SLOVENIA

Lakes and Reservoirs in Slovenia, Table 3. Classification of selected Slovenian lakes and reservoirs into the trophic category using the OECD criteria, given for the period 1992–2010 (available data from the Environmental Agency of the Republic of Slovenia)

	Total phosphorus	Inorganic nitrogen	Transparency		Chlorophyll a	
Trophic category	Annual mean mg/m ³	Annual mean mg/m ³	Annual mean m	Minimum m	Annual mean mg/m ³	Peak value mg/m ³
Ultra-oligotrophic	≤ 4.0	≤ 200	≥ 12.0	≥ 6.0	≤ 1.0	≤ 2.5
Oligotrophic	≤ 10.0	200-400	≥ 6.0	≥ 3.0	≤ 2.5	≤ 8.0
Mesotrophic	10-35	300-650	6-3	3-1.5	2.5-8	8-25
Eutrophic	35-100	500-1500	3-1.5	1.5-0.7	8-25	25-75
Hypereutrophic	≥ 100	≥ 1500	≤ 1.5	≤ 0.7	≥ 25	≥ 75
Lake Bohinj 1997	4.6	472	9.8	6.0	1.0	3.0
1998	3.2	477	7.9	5.6	1.7	3.5
1999	3.4	447	9.1	7.4	1.8	4.2
2000	3.3	468	9.1	4.9	1.6	3.1
2001	4.9	380	10.4	6.8	1.4	2.8
2002	3.5	450	9.8	6.4	1.4	3.3
2003	4.0	423	9.6	7.0	1.3	4.5
2004	4.7	469	8.7	4.5	1.2	3.2
2005	5.1	446	9.7	5.9	1.0	4.1
2006	3.6	485	9.8	7.5	0.7	1.7
2007	5.2	512	9.2	-	1.0	-
2008	3.6	454	9.0	-	1.0	-
2009	3.5	394	8.3	-	1.2	-
2010	4.0	369	8.5	6.0	1.2	3.9
Lake Bled			0			
1992	22.6	468	6.1	1.7	4.7	28.2
1993	33.0	342	5.9	1.7	4.5	18.3
1994	19.3	419	5.5	2.7	5.0	35.4
1995	15.2	477	5.9	2.5	3.4	17.2
1996	14.5	470	65	3.8	2.8	11.2
1997	12.7	495	8.4	4.1	2.9 7.6	13.3 29.1
1998 1999	17.9	312	5.0	1.2	9.3	47.4
2000	14.3	280	53	2.5	7.2	25.7
2000	14.3	263	6.5	2.6	7.2	24.5
2002	12.6	247	7.9	5.0	4.7	19.2
2003	12.7	252	6.7	3.5	6.2	23.4
2004	13.0	273	5.9	2.7	5.2	223
2005	11.7	296	7.2	4.5	3.7	12.7
2006	14.7	325	6.8	3.5	4.7	14.8
2007	12.7	3.50	8.3	-	2.7	-
2008	11.0	350	6.6	-	3.9	-
2009	13.2	422	5.0	-	3.7	-
2010	12.0	299	4.5	2.5	7.3	19.4
Lake Šmartinsko jez	tero					
2003		638	1.7	1.3	11.5	22.8
2004	41	862	1.2	1.1	28.0	46.0
2005	171	877	0.9	0.4	13.4	74.9
2006	33	653	1.0	0.5	16.5	44.0
2007	95	811	0.8	0.6	9.4	76.2
2008	49	706	1.1	-	9.5	-
2009	39	494		-	9.5	-
2010	46	681	1.0	0.6	27.6	75.1
Lake Ledavsko jezer 2003	105	1124	0.5	0.3	62.7	425.8
2003	70	2553	0.7	0.6	62.7	425.8
2004	268	3408	0.7	0.4	37.0	83.3
2005	102	1693	0.8	0.4	36.4	57.2
2005	135	2978	0.3	0.15	61.4	205.8
2007	104	913	0.5	0.15	32.0	200.8
2008	137	1018		-	22.1	-
2010	70	824	0.5	0.3	32.3	67.5
		11 41				47-

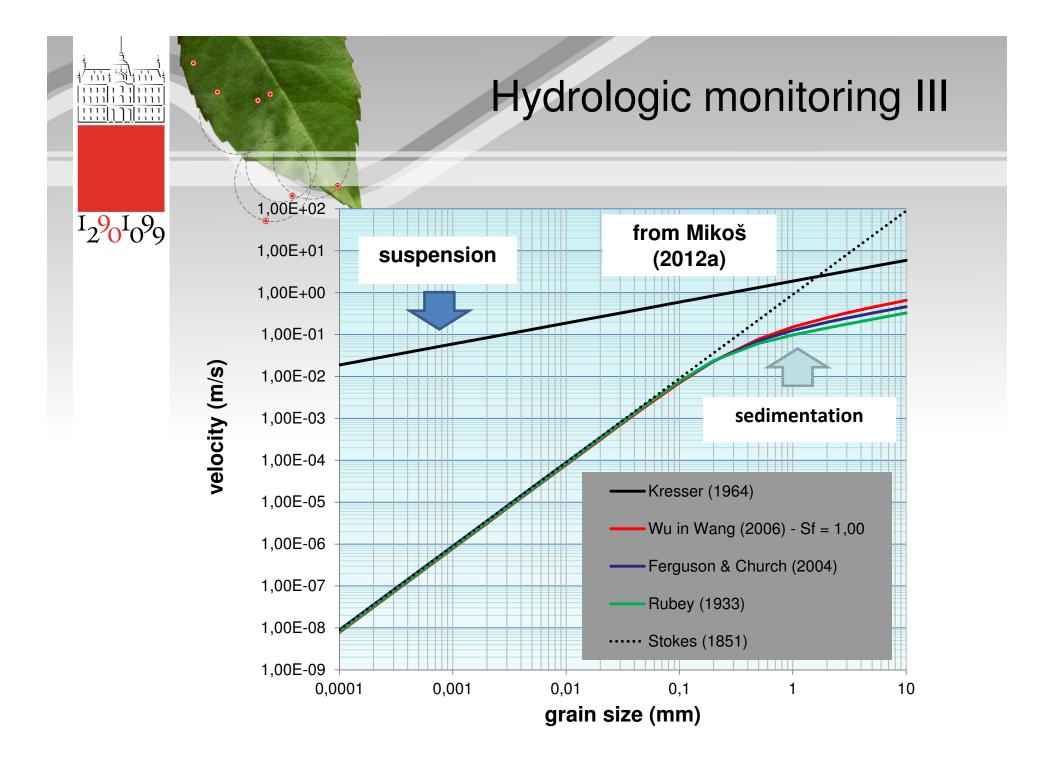
Lakes & reservoirs II

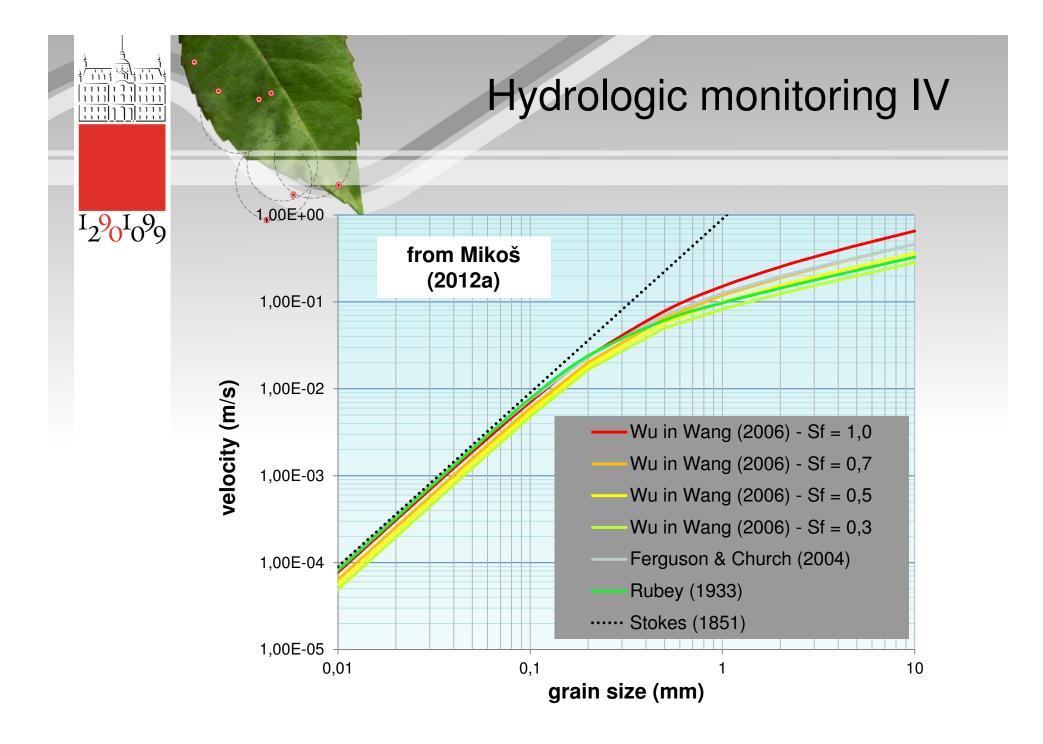
from Mikoš (2012d)

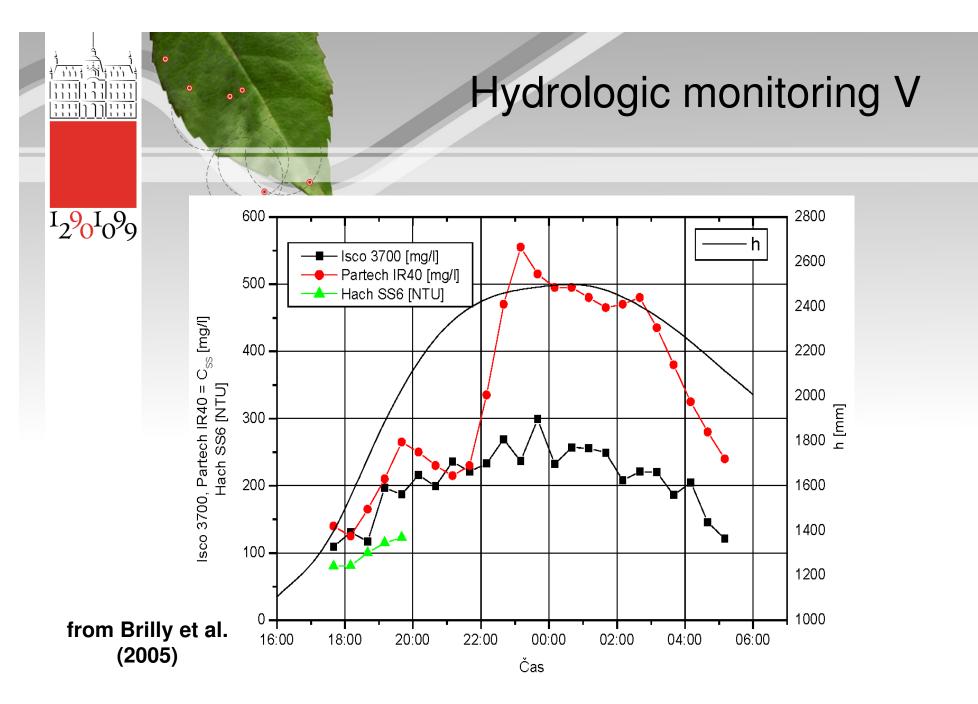

Hydrologic monitoring I

¹2⁹0¹0⁹9 Results of the state hydrologic monitoring is published by the Slovenian Environment Agency (ARSO) in annual reports:

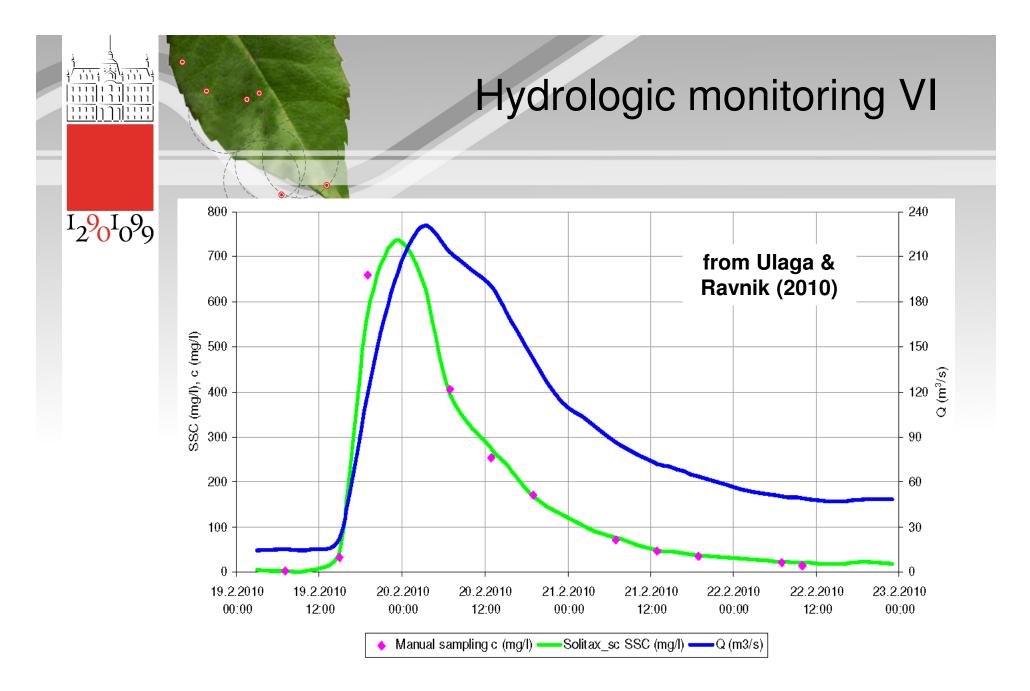
> http://www.arso.gov.si/vode/publikacije%20in%20poro%C4% 8Dila/letopisi.html


At extreme hydrologic events the Slovenian Environment Agency (ARSO) performs additional hydrologic analyses, published in special reports:


http://www.arso.gov.si/vode/poro%c4%8dila%20in%20publikacij <u>e/</u>



Conceptual vertical suspended sediment concentration left: fine-grained sediments right: coarse-grained sediments


> from Mikoš (2012a)

River turbidity in the Notranjska Reka on March 29 & 30, 2000

Measurements in WS Suha on the Sora River – using SOLITAX_sc

Hydrologic monitoring VII

¹2⁹0¹0⁹9

111

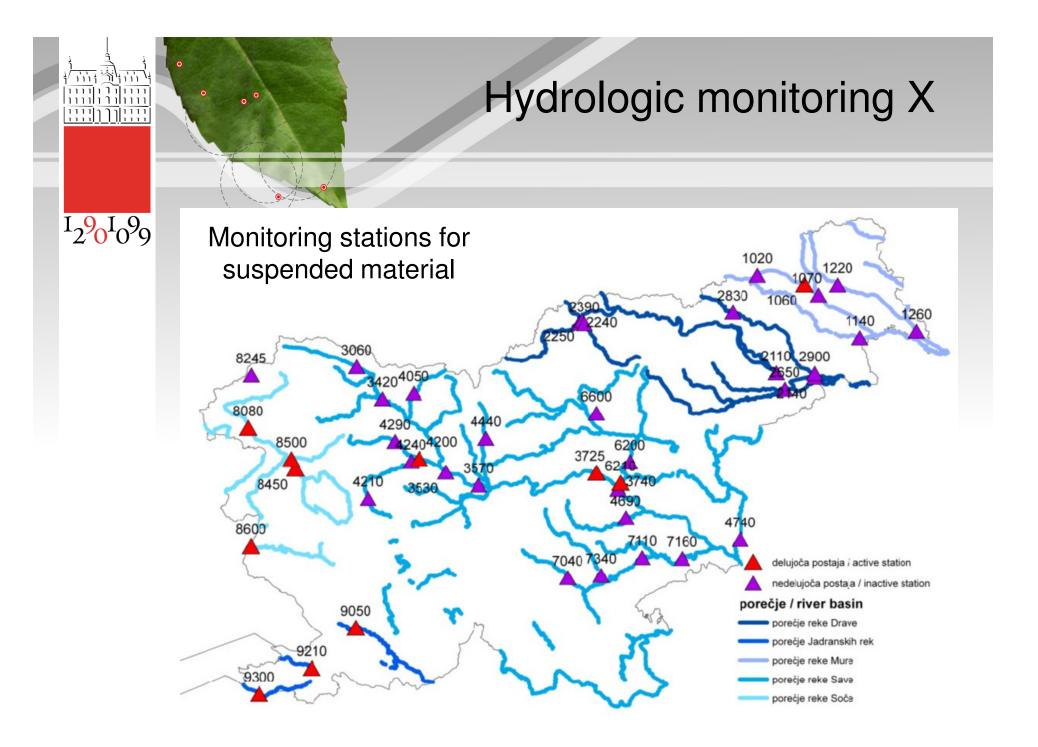
Technology (1)	Operating principle (2)	Advantages (3)	Disadvantages (4)	
Acoustic	Sound backscattered from sediment is used to determine size distribution and concentration.	measures over wide vertical range, nonintrusive	Backscattered acoustic signal is difficult to translate, signal attenuation at high particle concentration	
Bottle sampling	Water-sediment sample is taken isoki- netically by submerging container in streamflow and is later analyzed.	Accepted, time-tested technique, allows determination of concentration and size distribution, most other tech- niques are calibrated against bottle samplers	requires laboratory analysis to extract data, requires on-site personnel	
Pump sampling	Water-sediment sample is pumped from stream and later analyzed.	Accepted, time-tested technique, allows determination of concentration and size distribution	Poor temporal resolution, intrusive, re- quires laboratory analysis, does not usually sample isokinetically	
Focused beam reflectance	Time of reflection of laser incident on sediment particles is measured.	No particle size dependency, wide par- ticle size and concentration measur- ing range	Expensive, flow intrusive, point mea- surement only	
Laser diffraction	Refraction angle of laser incident on sediment particles is measured.	No particle-size dependency	Unreliable, expensive, flow intrusive, point measurement only, limited par- ticle-size range	
Nuclear	Backscatter or transmission of gamma or X-rays through water-sediment samples is measured.	Low power consumption, wide particle size and concentration measuring range	Low sensitivity, radioactive source de- cay, regulations, flow intrusive, point measurement only	
Optical		Simple, good temporal resolution, al- lows remote deployment and data logging, relatively inexpensive	Exhibits strong particle-size depen- dency, flow intrusive, point measure- ment only, instrument fouling	
Remote spectral reflectance		Able to measure over broad areas	Poor resolution, poor applicability in fluvial environment, particle-size de- pendency	

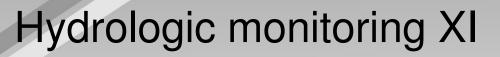
TABLE 1. Suspended-Sediment Measurement Techniques

from Wren et al. (2000)

Hydrologic monitoring VIII

		_			
I ₂ 90I099	Model	Freq.	Width, Angle,	Max. distance	Applications
2009	ADCP	kHz	Beam nr.	(m)	
	Teledyne RD Instruments	300	< 1°, 20°, 3	W up to 250 m	Saône, France
	Workhorse H-ADCP	600	< 1°, 20°, 3	W up to 85 m	Isere, France
	Teledyne RD Instruments	1200	?, 20°, 3	D up to 21 m	Banat, Romania
	Workhorse Rio Grande				Paraná, Argentina
	ADCP				
	Teledyne RD Instruments	1200	1,5°, 20°, 2	W up to 20 m	Isere, France
	ChannelMaster H-ADCP				
	SonTek ADCP	500	1,5°, 25°, 3	D up to 100 m	Fraser, Canada
		1000	1,5°, 25°, 3	D up to 30 m	Paraná, Argentina
		1500	1,5°, 25°, 3	D up to 20 m	laboratory

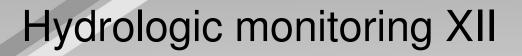

from Mikoš (2012b)


Hydrologic monitoring IX

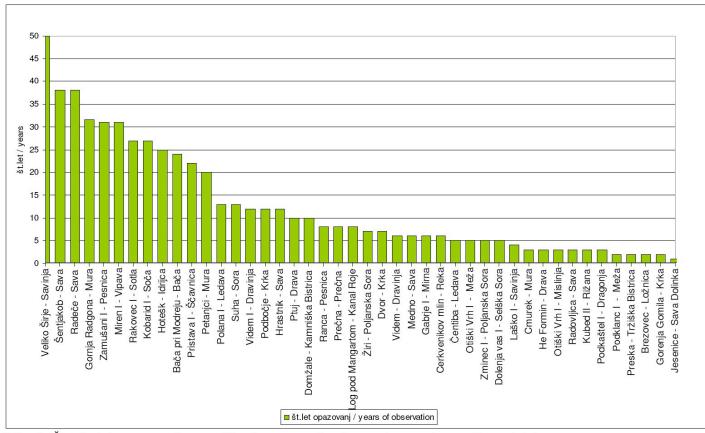
I₂90I099

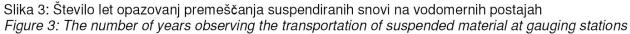
ADCP	Absorption	Particle size at peak	Minimum detectable
Frequency	factor α	instrument's sensibility	particle size by
(kHz)	(dB/m)	(μm)	instruments (µm)
3000	2.4	160	8
1500	0.6	320	16
750	0.15	640	30
500	0.067	960	50
250	0.017	1920	100

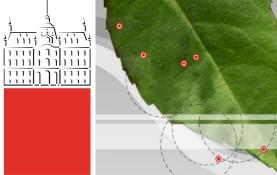
from Mikoš (2012b)



¹2⁹0¹0⁹9


1'1'


Preglednica 1: Število delujočih postaj v petletnem obdobju Table 1: Number of stations operating in the 5-year period


Obdobje/Period	1955-	1960-	1965-	1970-	1975-	1980-	1985-	1990-	1995-	2000-	2005-
	1959	1964	1969	1974	1979	1984	1989	1994	1999	2004	2008
Št.delujočih postaj/ No.of gauging stations	6	6	8	12	25	16	13	13	15	16	14

Hydrologic monitoring XIII

 $I_2 9_0 I_0 9_9$

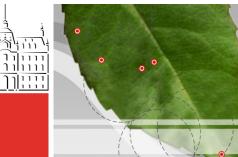
-1'1'

1111

Preglednica 2: Monitoring suspendiranih snovi v letu 2008 Table 2: Monitoring suspended material in 2008

Šifra <i>Code</i>	Postaja <i>Station</i>	Začetek <i>First year</i>	Let opazovanj Years of observation	Prekinitev niza Interruption of observation
1060	Gornja Radgona - Mura	1977	32	NP
3725	Hrastnik - Sava	1997	12	NP
4200	Suha - Sora	1974	13	1980-2001
6210	Veliko Širje - Savinja	1955	50	1990-1993
8080	Kobarid I - Soča	1960	27	1977-1998
8450	Hotešk - Idrijca	1978	25	1980-1985
8500	Bača pri Modreju - Bača	1985	24	NP
8600	Miren I - Vipava	1978	31	NP
9050	Cerkvenikov mlin - Reka	2001	6	2004-2005
9210	Kubed II - Rižana	2006	3	NP
9300	Podkaštel I - Dragonja	2006	3	NP

NP - neprekinjen niz / uninterrupted

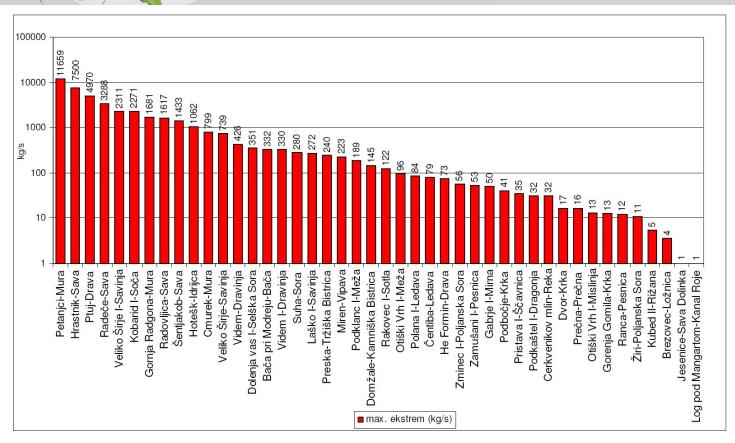

Hydrologic monitoring XIV

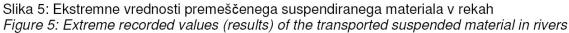
Preglednica 3: Vodomerne postaje na katerih se je izvajal monitoring suspendiranih snovi Table 3: Water gauging stations at which monitoring of suspended material took place

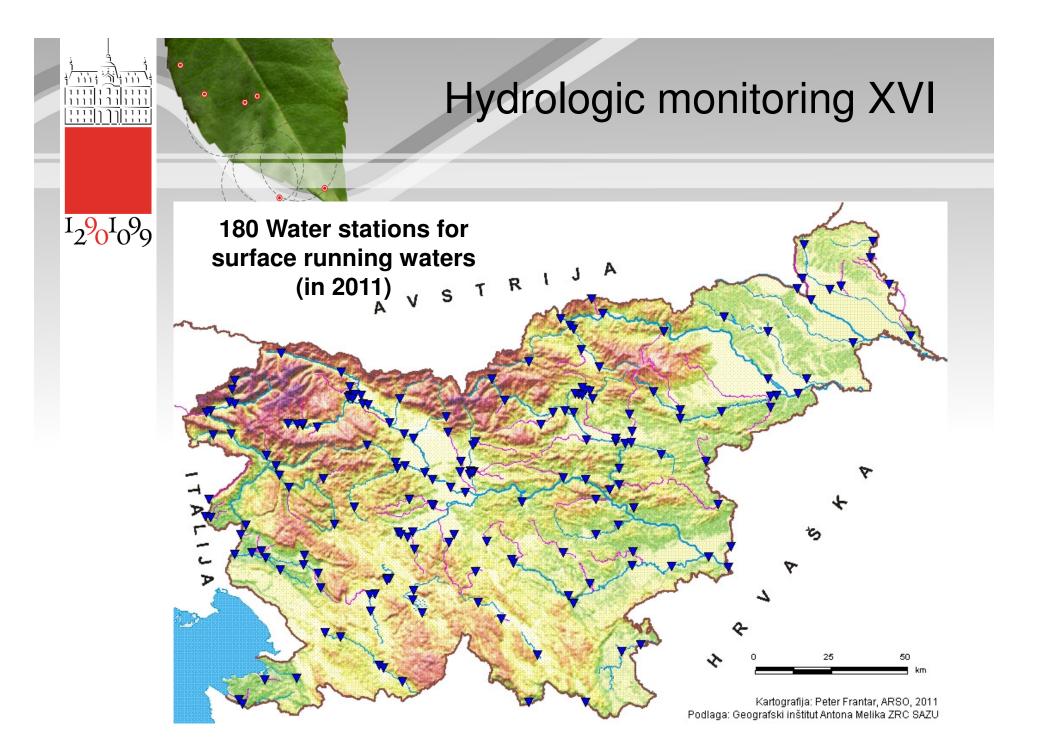
111

 $I_2 9_0 I_0 9_9$

Šifra <i>Code</i>	Postaja Station	Začetek First year	Konec Last year	Let opazovanj Years of observation	Prekinitev niza Interruption of observation
1020	Cmurek - Mura	1978	1980	3	NP
1070	Petanjci - Mura	1956	1976	20	1974
1140	Pristava I - Ščavnica	1979	2004	22	NP
1220	Polana I - Ledava	1963	1978	13	1974, 1976, 1977
1260	Čentiba - Ledava	1979	1995	5	1981-1985, 1988-1994
2110	Ptuj - Drava	1956	1965	10	NP
2140	He Formin - Drava	1979	1981	3	NP
2240	Podklanc I - Meža	1979	1980	2	NP
2250	Otiški Vrh I - Meža	1997	2001	5	NP
2390	Otiški Vrh I - Mislinja	1992	2000	3	1994-1999
2650	Videm I - Dravinja	1988	1999	12	NP
2652	Videm - Dravinja	2001	2006	6	NP
2830	Ranca - Pesnica	1967	1975	8	1974
2900	Zamušani I - Pesnica	1967	2004	31	1974,1977,1978,1988,2003
3060	Jesenice - Sava Dolinka	1980	1980	1	NP
3420	Radovljica - Sava	2004	2006	3	NP
3530	Medno - Sava	1997	2002	6	NP
3570	Šentjakob - Sava	1955	1994	38	1974, 1977
3740	Radeče - Sava	1955	1993	38	1974
4050	Preska - Tržiška Bistrica	1978	1979	2	NP
4210	Žiri - Poljanska Sora	1971	1978	7	1973
4240	Zminec I - Poljanska Sora	1974	1981	5	1975, 1976, 1979
4290	Dolenja vas I - Selška Sora	1973	1977	5	NP
4440	Domžale - Kamniška Bistrica	1978	1988	10	1983
4690	Gabrje I - Mirna	1977	1982	6	NP
4740	Rakovec I - Sotla	1978	2006	27	1985, 1996
6200	Laško I - Savinja	1990	1993	4	NP
6600	Brezovec - Ložnica	1958	1959	2	NP
7040	Dvor - Krka	1978	1984	7	NP
7110	Gorenja Gomila - Krka	1978	1979	2	NP
7160	Podbočje - Krka	1977	1987	12	NP
7340	Prečna - Prečna	1978	1985	8	NP
8245	Log pod Mangartom - Kanal Roje	1992	2000	8	1997 2 - neprekinjen niz / uninterrupted

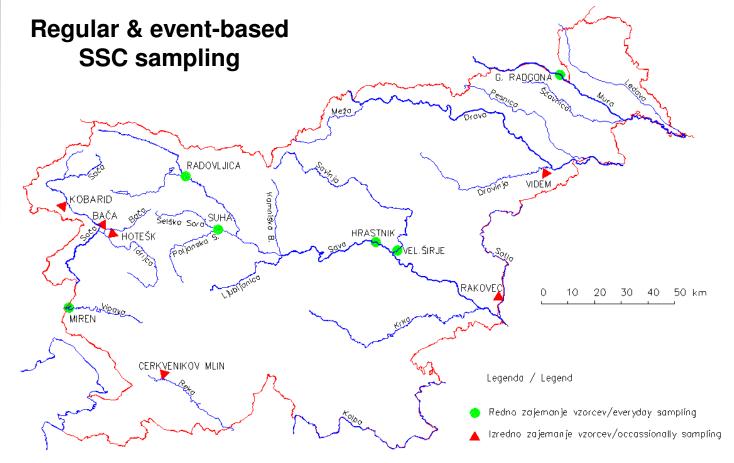


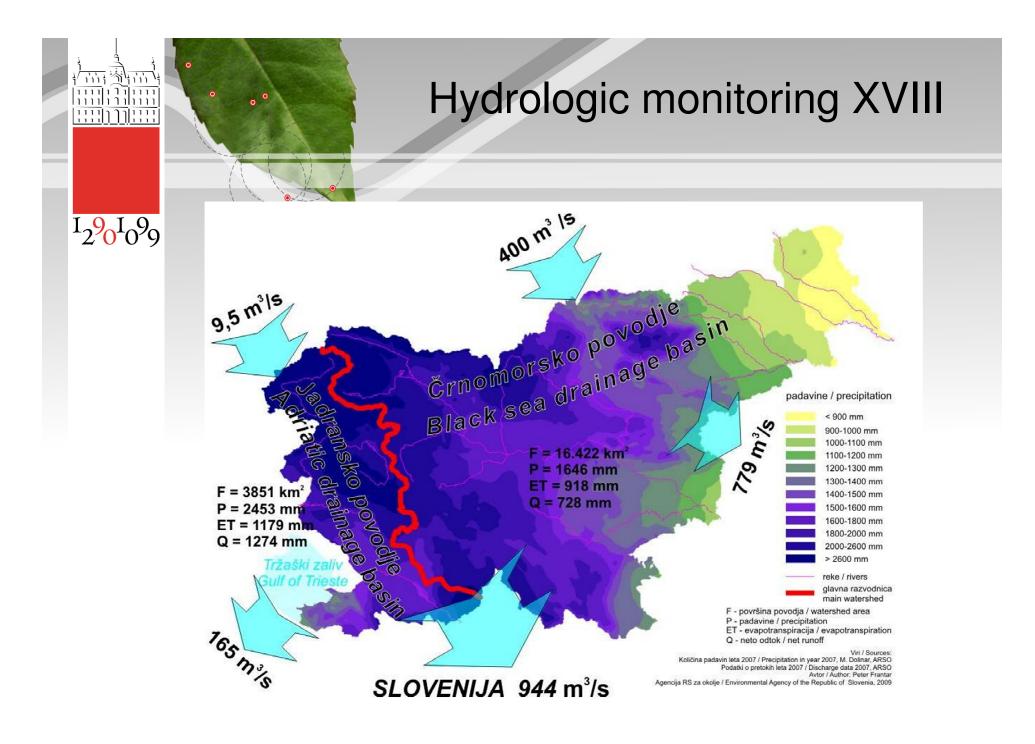

Hydrologic monitoring XV



111

 $\frac{1111}{1111}$





Hydrologic monitoring XVII

Hydrologic monitoring XIX

I₂90I099

<u>| 111 | 1 1 | 111</u>

Preglednica 1: Največje vsebnosti suspendiranega materiala v vzorcih leta 2008 in največje izmerjene vsebnosti v obdobju 1977–2007

Table 1: Maximum concentrations of suspended material in the samples in 2008 and the maximum measured concentrations during the reference period (1977-2007)

		2008		1977 - 2007		
Vodotok <i>Stream</i>	Vodomerna postaja <i>Gauging station</i>	Vsebnost c (g/m ³) Concentratio n c (g/m ³)	Datum vzorčenja <i>Date of</i> sampling	Največja obdobna vsebnost c (g/m ³) <i>The highest</i> <i>concentration in</i> <i>the period c (g/m³)</i>	Datum največje obdobne vsebnosti Date of the highest concentration in the period	
Mura	Gornja Radgona	1179	27.06.	2364	16.05.1996	
Sava	Hrastnik	1135	18.12.	6405	19.09.2007	
Sora	Suha	1159	18.07.	8120	28.02.1977	
Savinja	Veliko Širje	1733	14.07.	9574	14.04.1994	
Soča	Kobarid	5501	30.10.	8112	17.11.2000	
Bača	Bača pri Modreju	2846	30.10.	5125	21.08.1988	
Idrijca	Hotešk	1139	05.12.	3743	09.10.1993	
Vipava	Miren	235	15.07.	1105	27.10.2004	
Reka	Cerkvenikov mlin*	160	12.12.	280	12.11.2001	
Rižana	Kubed**	174	31.07.	189	14.08.2006	
Dragonja	Podkaštel**	242	12.12.	1362	13.02.2007	

* Vzorčenje poteka od leta 2001. *Sampling performed since 2001. ** Vzorčenje poteka od leta 2006.

**Sampling performed since 2006.

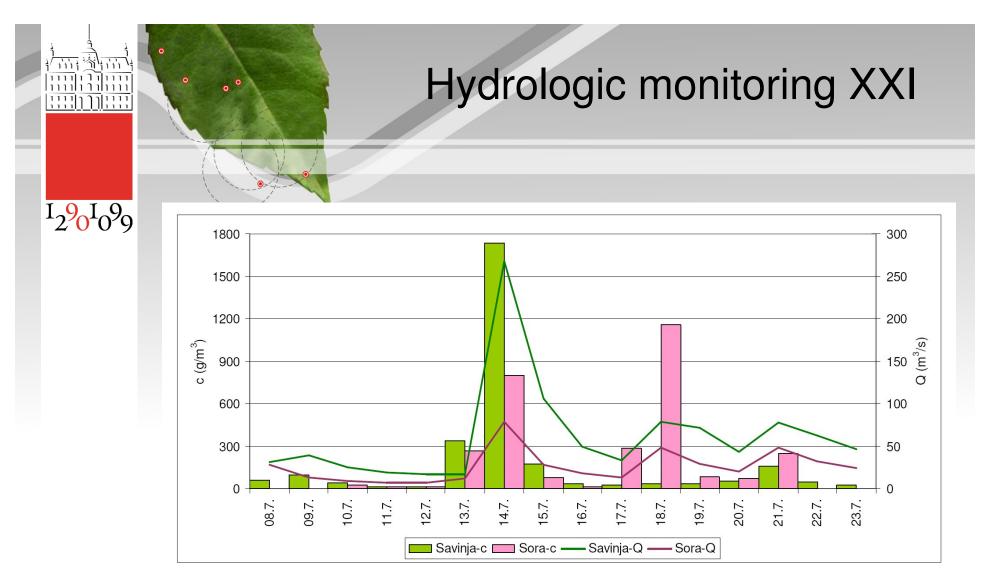
Hydrologic monitoring XX

I₂90I099

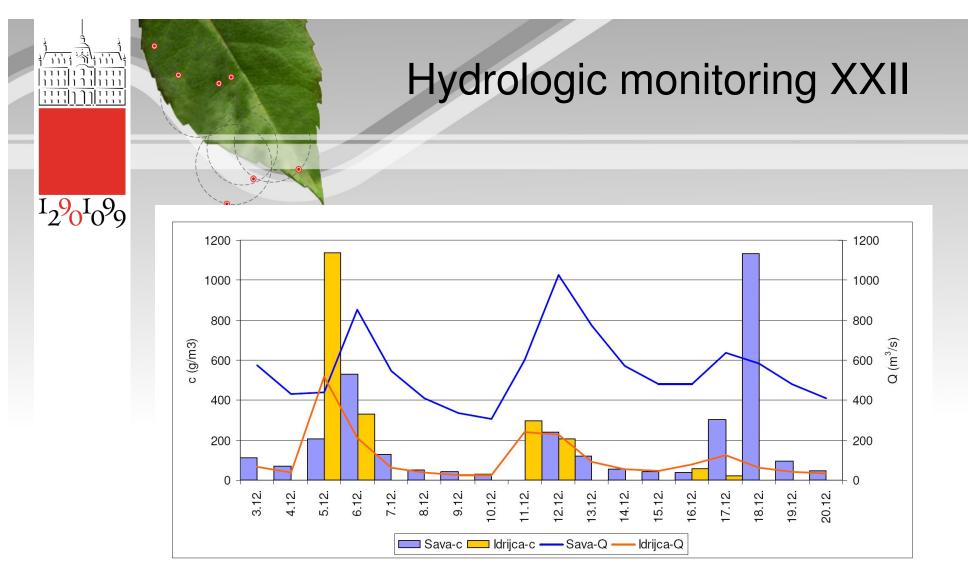
 $\left|\frac{1}{1}\right|$

Preglednica 2: Največje letno premeščanje suspendiranega materiala med odvzetimi vzorci v letu 2008 ter srednja obdobna vrednost premeščenega suspendiranega materiala

Table 2: Maximum annual transportation of suspended material among the samples taken in 2008 and mean periodical value of the transported suspended material

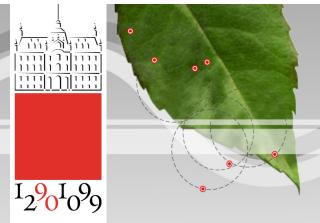

Vodotok <i>Stream</i>	Vodomerna postaja <i>Gauging station</i>	Največji letni 2008 S (kg/s) The highest annual transport S (kg/s)	Datum vzorčenja 2008 <i>Date of</i> sampling 2008	Srednji obdobni transport (kg/s) <i>Mean transport in the</i> <i>period (kg/s)</i>
Mura	Gornja Radgona	271	17.08.	12
Sava	Hrastnik	661	18.12.	16
Sora	Suha	57	18.07.	3,3
Savinja	Veliko Širje	264	14.07.	6
Soča	Kobarid	2141	30.10.	19,6
Bača	Bača pri Modreju	104	30.10.	2,6
Idrijca	Hotešk	230	05.12.	12,8
Vipava	Miren	17	11.12.	1,1
Reka	Cerkvenikov mlin*	32	12.12.	0,7
Rižana	Kubed**	4	12.12.	0,5
Dragonja	Podkaštel**	4,8	12.12.	6

* Vzorčenje poteka od leta 2001.


** Vzorčenje poteka od leta 2006.

*Sampling performed since 2001.

**Sampling performed since 2006.


Slika 2: Povečana vsebnost suspendiranega materiala julija 2008 v Savinji in Sori Figure 2: Increased suspended material concentration in July 2008 in the Savinja and Sora rivers

Slika 3: Povečana vsebnost suspendiranega materiala v decembru 2008 v Savi in Idrijci. Figure 3: Increased suspended material concentration in December 2008 in the Sava and Idrijca rivers

LISST-SL

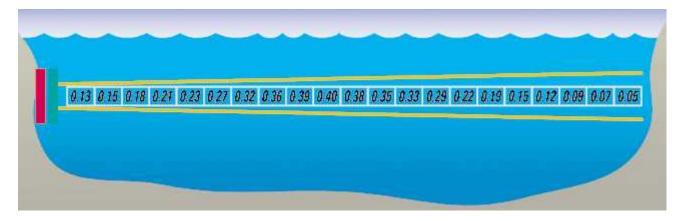
Hydrologic monitoring XXIV

Typical bridge deployment

Hydrologic monitoring XXVI

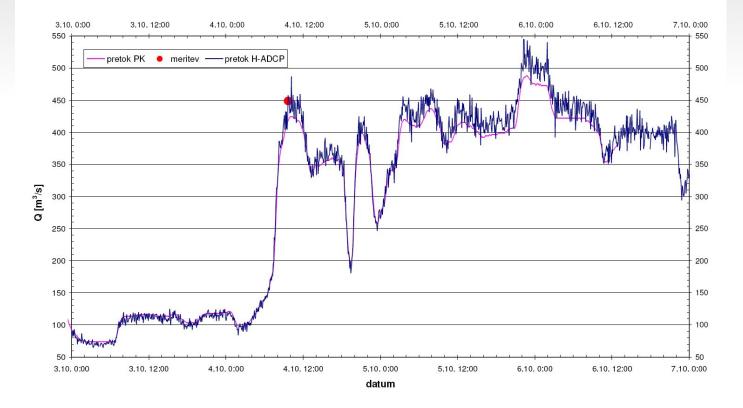
Sequoia Instruments LISST-Portable

 $I_2 9_0 I_0 9_9$


Hydrologic monitoring XXVII

Teledyne RD Instruments H-ADCP ChannelMater 600 kHz

Hydrologic monitoring XXVIII


¹2⁹0¹0⁹9

1111

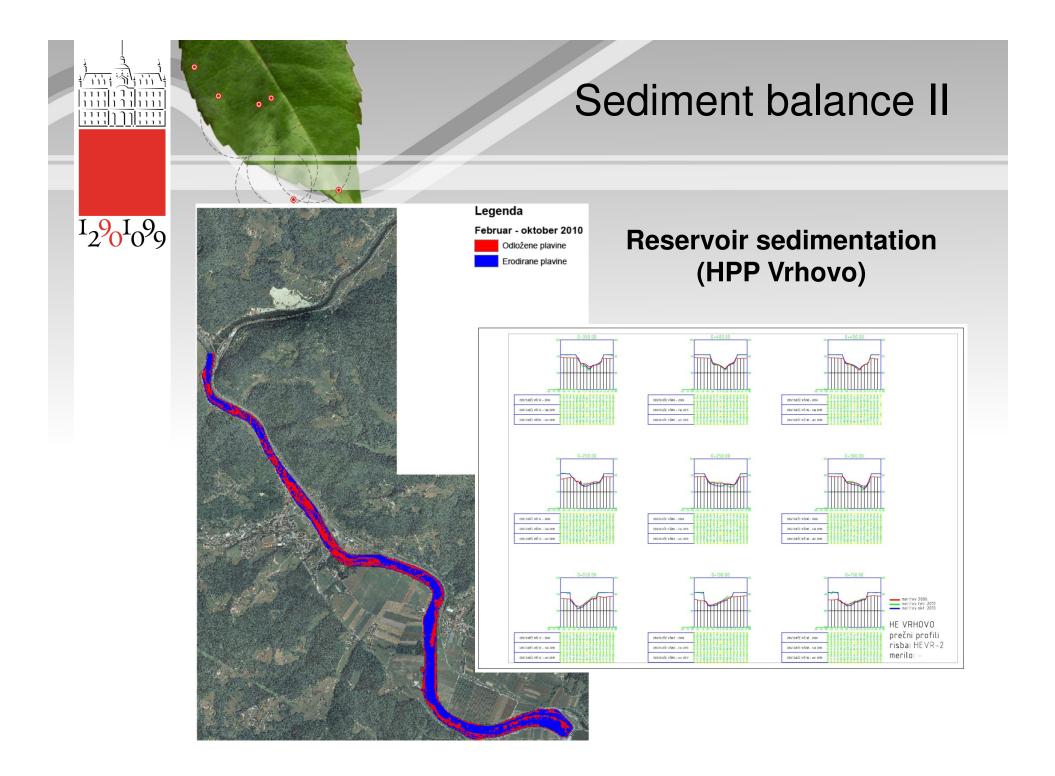
Sava Sentjakob 27.9.-21.10.2005 H-ADCP vs. discharge curve

from Trček (2005)

Slika 8: Primerjava pretokov izvrednotenih iz odvisnosti Q-H ter pretokov izmerjenih s H-ADCP. Ujemanje je boljše pri nižjih vrednostih, pri višjih pa nam da izračun iz izmerjenih hitrosti višje pretoke kot izvrednotenje iz pretočne krivulje. Za primerjavo je dodana izmerjena vrednost pretoka.

Sediment balance I

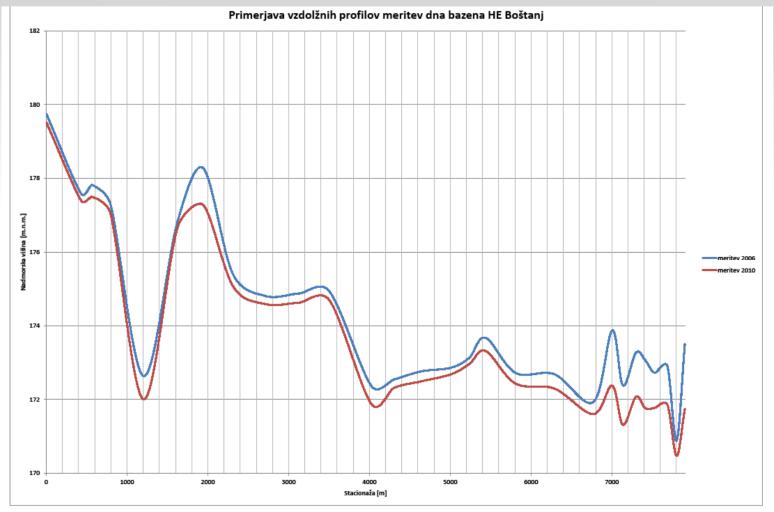
In Slovenia, rock falls, landslides, torrential erosion in headwaters, and riverbank erosion are the most hazardous phenomena.

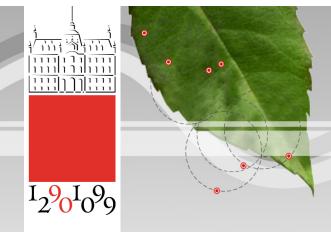

Land sliding and erosion is present in about 43 % of the Slovenian territory (some 8,800 km² of labile or potentially unstable slopes), 8,000 km of torrential streams & nearly 400 torrential watersheds.

The annual average sediment production in headwaters in Slovenia is estimated at around 5 million m³ per average hydrological year.

The specific annual average sediment production is estimated at 250 m³/km²/year or the denudation rate is 0.25 mm/year.

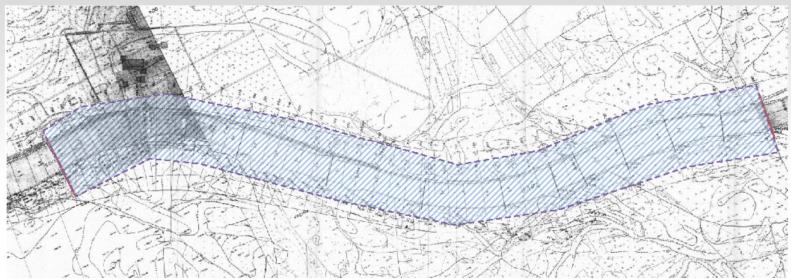
On average, nearly half of this material (around 2.3 Mio m³/year) reaches the hydrological network and is transported towards sedimentation basins.

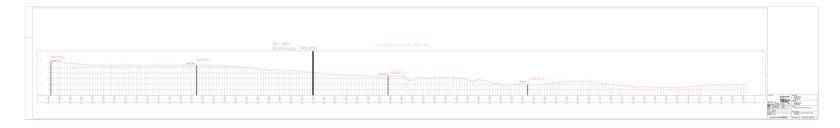

Nearly 0.5 Mio m³ a year is on average temporarily deposited within the fluvial system, mainly in man-made reservoirs (HPPs).



Sediment balance III

Reservoir sedimentation (HPP Boštanj)


I₂90I099



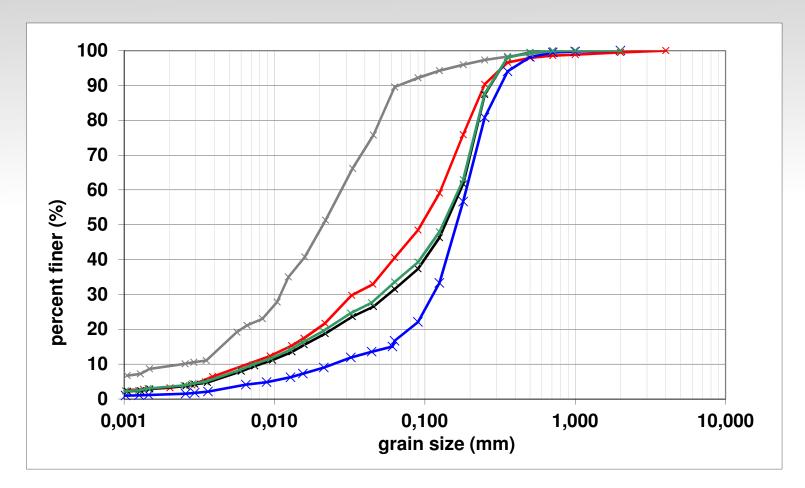
Sediment balance IV

Reservoir sedimentation (NPP Krško)

Sediment balance V

Water intake NPP Krško

I290I099



Sediment balance VI

I₂90I099

Wet sieving (SIST/ISO/TS 17892 – 4: 2004) & areometer (< 0.063mm)

Conclusions I

¹2%¹0% Water quality monitoring in the Republic of Slovenia:

- Performed by the Slovenian Environment Agency (ARSO)
- Modernised in the last years
- In accordance with the WFD
- Chemical and ecological status of surface waters in Slovenia is improving in the last period

Conclusions II

¹2%¹0% Hydrologic monitoring in the Republic of Slovenia:

- Performed by the Slovenian Environment Agency (ARSO)
- To be modernised in the next period (project **BOBER**)
- Suspended loads are measured at selected sites only (the number is not sufficient)
- Bed loads are estimated only from reservoir • sedimentation data

Conclusions III

¹2%¹0% Sediment balance in the Sava river system:

- Assessed using suspended loads' measurements and bed loads' estimations
- No direct bedload measurements, reservoir sedimentation data used instead
- In many reaches latent erosion is prevailing (torrent control works in headwaters, gravel mining, reservoir sedimentation in middle reaches)
- Estimation of sediment transport capacity can only help to a certain extent to assess annual erosion and sedimentation

Conclusions IV

¹2%¹0% Contact persons at Hydrology and State of the Environment Office of the Slovenian Environment Agency (ARSO), Ljubljana:

Roman Trček M.Sc. Head of Hydrometry Division roman.trcek@gov.si

Mira Kobold Ph.D.

Head of Surface Waters Analysis and Forecast Division

mira.kobold@gov.si

Florjana Ulaga M.Sc.

Surface Waters Analysis Department

florjana.ulaga@gov.si

Mojca Dobnikar Tehovnik M.Sc.

Head of Water Quality Division

mojca.dobnikar-tehovnik@gov.si

Literature I

¹2%¹0% Selected bibliography (chronologically):

- Mikoš, M. (2012a). Kalnost v rekah kot del erozijsko-sedimentacijskega kroga = Suspended loads in rivers as a part of the erosion and sedimentation cycle. Gradbeni vestnik 61/6, 129-136.
- Mikoš, M. (2012b). Metode terenskih meritev suspendiranih sedimentov v rekah = Methods of field measurements of suspended sediment in rivers. Gradbeni vestnik 61/7, 151-158.
- Mikoš, M. (2012c). Predlog obratovalnega hidrološkega monitoringa kalnosti na spodnji Savi = A proposal of operational hydrologic monitoring of suspended-sediment loads in the lower Sava river. Gradbeni vestnik 61/8, 170–176.
- Mikoš, M. (2012d). Slovenia, Lakes and Reservoirs. In: Bengtsson, L. (ed.). Encyclopedia of lakes and reservoirs, Encyclopedia of earth sciences series. Springer Verlag, 716–722.
- Mikoš, M. (2011). Public Perception and Stakeholder Involvement in the Crisis Management of Sediment-Related Disasters and their Mitigation : the Case of the Stože Debris Flow in NW Slovenia. Integrated environmental assessment and management 7/2, 216-227, doi: 10.1002/ieam.140.
- Ulaga, F., Ravnik, L. (2010). Testing of Automatic Turbidity Sensor Solitax sc and Evaluation of Suspended Sediment in Rivers, Proceedings BALWOIS 2010 - Ohrid, Republic of Macedonia, 8 p.
- Rusjan, S., Mikoš, M. (2006). Dinamika premeščanja lebdečih plavin v porečjih = Suspended load transport dynamics in river basins. Acta hydrotechnica 24/40, 1-20, ftp://ksh.fgg.uni-lj.si/acta/a40sr.pdf.
- Mikoš, M., Fazarinc, R., Ribičič, M. (2006). Sediment production and delivery from recent large landslides and earthquake-induced rock falls in the Upper Soča River Valley, Slovenia. Engineering geology 86/2-3, 198-210.
- Trček, R. (2005). Uporaba horizontalnega merilnika hitrosti (H-ADCP) za določitev pretoka rek. In: Mišičev vodarski dan, 161-168, http://mvd20.com/LETO2005/R22.pdf
- Brilly, M., Globevnik, L., Štravs, L., Rusjan, S. (2005). Eksperimentalna porečja v Sloveniji. In: Zbornik Raziskave s področja geodezije in geofizike 2004, 47-59, http://www.fgg.unilj.si/sugg/referati/2005/SZGG 05 Brilly et al.pdf

Literature II

¹2%¹0% Selected bibliography (chronologically):

1111

- Mikoš, M., Brilly, M., Ribičič, M. (2004). Poplave in zemeljski plazovi v Sloveniji Floods and Landslides in Slovenia. *Acta hydrotechnica* 22/37, 113–133.
- Wren, D.G., Barkdoll, B.D., Kuhnle, R.A., Derrow, R.W. (2000). Field techniques for suspended-sediment measurement, *Journal of Hydraulic Engineering* 126/2, 97–104.
- Mikoš, M. (2000a). Prodna bilanca reke Save od Jesenic do Mokric = Sediment budget of the Sava river from Jesenice to Mokrice. *Gradbeni vestnik* 49/9, 208–219.
- Mikoš, M. (2000b). Zasipavanje akumulacijskih jezer na reki Savi = Sedimentation of retention basins on the Sava River. *Gradbeni vestnik* 49/10, 224–230.