Evaluation of the Quality and Significance of Stormwater Discharge to Sediment Quality in Urban Waterways

Katherine Cronin (Deltares, Delft, The Netherlands)
Philip Spadaro (The Intelligence Group, Seattle, Washington)
Luca Sittoni (Deltares, Delft, The Netherlands)
Jason Dittman (The Intelligence Group, Seattle, Washington)
Christopher Moody (The Intelligence Group, Seattle, Washington)
David Profusek (The Intelligence Group, Seattle, Washington)
Samantha Bowerman (The Intelligence Group, Seattle, Washington)

23 September 2015
9th International SedNet Conference
Session: Sediments and Society
23rd September 2015
• Why is evaluating the impact of stormwater loading on sediment quality important?
 - Potential source requiring cleanup
 - Potential source of recontamination
 - Often not considered a major source until studied
Evaluation of Urban Stormwater

- Urban stormwater runoff can be a source of COCs (e.g., roadways, architectural coatings, atmospheric deposition...)
- **Urban stormwater** is associated with specific COCs and typical concentrations
- The mass of COCs to the waterway can be used as a model input
- Several models are available to estimate the mass flux of COCs
- The impact and distribution of COCs adsorbed on sediments from stormwater can be estimated from sediment transport and water quality modeling
- Urban stormwater is a bigger issue at sites with more stringent cleanup thresholds
Evaluation of Urban Stormwater

1. Identify COCs
2. Site Specific Sampling
3. Calculate COC Mass and Loading to Waterway
4. Determine Near Field Deposition Area
5. Apply Mass to Deposition Area
6. Compare to Cleanup Goals
7. Source Identification

23 September 2015
Sources of Pollutants in urban stormwater

- Atmospheric deposition
- Transportation - Vehicles
- Pavement and construction
- Road maintenance and pavement de-icing
- Landscape management
- Building exteriors
- Industrial businesses
- Commercial businesses
- Residential activities
- Site development
- Public infrastructure

This presentation does not cover other COCs such as pathogens, conventionals (nitrogen, phosphorus), emerging COCs (pharmaceuticals, plastic micro-particles, etc.)
Major Pollutants Detected

- Metals
- Phthalates
- Oil/grease
- Total Petroleum Hydrocarbons (TPH)
- Polycyclic Aromatic Hydrocarbons (PAHs)
- Pesticides and Herbicides
- PCBs
- Dioxins
Evaluation of Urban Stormwater

1. Identify COCs
2. Site Specific Sampling
3. Calculate COC Mass and Loading to Waterway
4. Determine Near Field Deposition Area
5. Apply Mass to Deposition Area
6. Compare to Cleanup Goals
7. Source Identification

23 September 2015
Methodology for sampling and types of media sampled are important for evaluating COCs in stormwater.

Site-specific sampling (e.g., stormwater, sediment trap, in-line sediment) necessary to characterize stormwater that discharges from roadways under consideration.

Stormwater sampling locations can be correlated to traffic volumes and land uses (e.g., low-high traffic volume and rural-urban land use).

Targeted locations allow for development of a more accurate understanding of COC contributions from specific roadways or areas.

Results from sampling along with literature review are used to describe typical COCs in stormwater from a specific roadway or facility.
Site Specific Sampling

Inline Sediment Sampling
- Grab samples
- Sediment traps

Water Sampling
- Stormwater

Discrete Grab Sample

Inline Sediment Sample
Evaluation of Urban Stormwater

1. Identify COCs
2. Site Specific Sampling
3. Calculate COC Mass and Loading to Waterway
4. Determine Near Field Deposition Area
5. Apply Mass to Deposition Area
6. Compare to Cleanup Goals
7. Source Identification

23 September 2015
A number of stormwater pollutant models are available, including: STEPL, AVGWLF, WINNSLAMM, SELDM, PLOAD, the P8 Urban Catchment Model, and the Simple Method.

The type of model selected depends on site variables such as scale, types of land use, basin specific source identification, actual measurement of storm events, etc...

Data needed for modeling:
- watershed drainage area
- impervious cover
- concentrations of contaminants in stormwater
- annual precipitation
Evaluation of Urban Stormwater

1. Identify COCs
2. Site Specific Sampling
3. Calculate COC Mass and Loading to Waterway
4. Determine Near Field Deposition Area
5. Apply Mass to Deposition Area
6. Compare to Cleanup Goals
7. Source Identification

23 September 2015
Determine deposition areas

Several aspects influence where contaminants deposit:

- Contaminants \rightarrow dissolved phase or adsorbed onto a sediment particle
- Exert toxic effects on benthic flora and fauna \rightarrow propagate through food chain

Source: ITRC
Why model?

• Empirical observations -> system understanding

• Modelling tools -> build system and process understanding

• Numerical models \(\rightarrow\) very useful tool to examine resuspension, transport and deposition of sediments at different temporal and spatial scales

• However before modelling \(\rightarrow\)

 • Is it necessary?
 • At what level of complexity?
 • What information will it add and how to use the outputs?
 • What about model validation?
 • Predictive modelling or execution support?
• Contaminants adsorb onto finer grained sediments more easily

• Cohesive versus non cohesive

• Settling velocities of particles

• Flocculation and particle characteristics

- Hydrodynamics conditions
- Dispersion and diffusion
- Near and far field processes
- Bed shear stresses
Determine deposition areas

- Outfall sediment load
- Particle size distribution
- Hydrodynamic scenarios and influence of discharge rates
- Scales of interest – near field, mid field – far field?
- Depositional zone from a particular source
- Longer term transport and mixing
- Delft3D-FLOW and Delft3D-WAQ
Modelling considerations

- Grid resolution → dilution → enhanced dispersion
- Estuarine circulation
- Tagging of sediment fractions
- Representative scenarios
- Initial deposition zones only or include resuspension for longer term estimates
Depositional Zones

Contour lines showing where certain thresholds of sediment has settled

23 September 2015
Influence of discharge events
Evaluation of Urban Stormwater

1. Identify COCs
2. Site Specific Sampling
3. Calculate COC Mass and Loading to Waterway
4. Determine Near Field Deposition Area
5. Apply Mass to Deposition Area
6. Compare to Cleanup Goals
7. Source Identification

23 September 2015
Step 5 - Apply Mass to Deposition Area

SEDCAM Model

• The SEDCAM model (Jacobs et al. 1988), which is accepted and widely used (in USA) one dimensional mixing model that evaluates source loading, sediment deposition, chemical specific degradation rate, and mixing

• The SEDCAM model considered the following factors to calculate the concentration of the COC in surface sediment over time:
 > The initial COC concentration in sediment
 > The rate and total accumulation of sediments deposited in the mixing layer
 > The concentration of the COC in the deposited sediment

The model contains several simplifying assumptions or limitations, such as a well-mixed surface sediment layer of defined thickness and a single term covering both chemical degradation and diffusion.
Evaluation of Urban Stormwater

1. Identify COCs
2. Site Specific Sampling
3. Calculate COC Mass and Loading to Waterway
4. Determine Near Field Deposition Area
5. Apply Mass to Deposition Area
6. Compare to Cleanup Goals
7. Source Identification

23 September 2015
Step 7 – Source Identification

Why is source identification important?

• Supports divisibility argument
• Helps find and identify sources
• Concentrations of COCs in sediment from stormwater are discernible from other sources of COCs (e.g., PAHs in stormwater have a different PAH signature than PAHs from former manufactured gas plants)

A focused sampling program with defined laboratory methods are necessary for source identification and tracing

Statistical tools (PCA, diagnostic ratios, profiles, and metal techniques) are one approach for source identification and tracing
Summary of Key Points

Sources of COCs in urban runoff (e.g., roadways, architectural coatings, atmospheric deposition...)

Mass of COCs to the waterway as a model input for flux calculation

Estimate impact of COCs adhered to sediments from stormwater discharge

Impact of different conditions (discharge, particle size etc.) on transport and deposition of contaminated sediments

Urban stormwater is a bigger issue at sites with lower cleanup thresholds.

23 September 2015
Thanks for listening

katherine.cronin@deltares.nl

pspadaro@intell-group.com

3 december 2015