Suspended sediment and contaminant transport monitoring in navigable and unnavigable waterways (Wallonia, Belgium)

9th International SedNet Conference 23-26 September 2015 – Krakow Poland

<u>Anne-Cécile DENIS</u>^{1,2}, Christophe FRIPPIAT¹, Jean VAN CAMPENHOUT², Geoffrey HOUBRECHTS², Didier BOUSMAR³, Eric HALLOT², Mathieu VESCHKENS¹, François PETIT²

 ¹ Institut Scientifique de Service Public (Belgium);
 ² University of Liège - Department of Geography – Laboratory of Hydrography and Fluvial Geomorphology (Belgium);
 ³ Service Public de Wallonie - Hydraulic Research Laboratory (Belgium);

Outline of the presentation

- 1. Management of dredged material in Wallonia
- 2. GISSed Project
- 3. Methodology
 - Suspended sediments transport monitoring
 - Suspended sediments quality monitoring
- 4. First results
- 5. Conclusions and outlook

1. Management of dredged material in Wallonia

 In Wallonia (Belgium) rate of sediment accumulation in waterways is estimated at 527 000 m³ / year

→ to maintain navigation capacity: at least **20 % should be removed**

- Annual cost of maintenance of waterways is currently estimated at least at:
 34 39 million €
- Maintenance is exclusively managed in a curative way :
 - Bathymetric survey \rightarrow quantify volume to be removed
 - Chemical analysis of coring samples in sediments to be removed
- Regulation (Walloon Government): Sediment out of water = waste
- Characterization and classification procedures on the basis of chemical analysis (heavy metals and organic micropollutant content + leaching tests)

=> 2 classes :

A not contaminated B contaminated

1. Management of dredged material in Wallonia

- Currently there is no available data
 - to anticipate the evolution of sediment deposits
 - → difficult to identify/plan the needs for dredging operations
 - →not possible to assess the efficiency of sediment control measures implemented
 - or to measure contaminants in recent sediments
 - → not possible to assess the efficiency of the measures taken
 - In the second second
 - → not possible to identify the needs in terms of sediment treatment technologies

2. GISSED Project

- The general objective of the GISSED project:
 - Contribute to the development of operational tools allowing the prediction of sediment and sediment quality budget

ightarrow to improve sediments management in Walloon waterways

→ Deployment of a suspended sediment pilot monitoring network:

3 experimental stations

On a navigable waterway: the Sambre River

- At Monceau (upstream Charleroi) (1 608 km²)
- At Châtelet (downstream Charleroi) (2 310 km²)

ightarrow Budget over the urban area of Charleroi

On an unnavigable waterways : the Samme River

• At Ronquières (outlet of the catchment) (135 km²)

 \rightarrow Transfers of sediments between a river and a waterway

Suspended sediments transport monitoring

Turbidity probe YSI 6026 ER

Automatic portable sampler (ISCO 6712) \rightarrow laboratory Turbidity probe (YSI 6026 ER) \rightarrow laboratory Water discharge (data from SPW-DGO2)

Ronquières automatic sampling station (Installation : May 9, 2014)

. Estimate sediment budget

Example of automatic sampling for a flood event (sampling every hour above a threshold of water level: 0.85 m)

Suspended sediments quality monitoring

- Development of a method to collect recent sediments (Time Integrated Sampler, sediment trap)
 - → Collect enough amount of suspended matter to allow pollutants concentration measurement

6/14

Sediment trap, TIS principle = reduction of velocity inside system, inducing particles deposition

7/14

Suspended sediments transport monitoring Quantification of suspended load transport

Suspended sediments transport monitoring Quantification of suspended load transport

Averaged suspended load at Ronquières (1989-2013): 8 720 T/yr

(calculated on the basis of hourly water discharges data from SPW-DGO2)

Denudation rate: 64,6 T/km²/yr

Suspended sediments quality monitoring Characterization of suspended load – validation of the method

Sampling of 5 to 450 g (dry matter) of recent sediments (suspended load) at Ronquières with a prototype of **Time Integrated Sampler (TIS)** and a **sediment trap (ST)** (bottle)

Suspended sediments quality monitoring Characterization of suspended load – validation of the method

Sampling recent sediments (suspended load) at Ronquières for the same event with a prototype of **Time Integrated Sampler (TIS)** and a **sediment trap (ST)** (bottle)

11/12

Suspended sediments quality monitoring Characterization of suspended load – validation of the method

Grain-size characteristics comparable between **Time Integrated Sampler (TIS)** and **automatic sampler** for samples collected during different periods (flood events) → Comparison of samples for the same periods and for a longer period (in progress)

12/12

Suspended sediments quality monitoring Suspended sediments quality – validation of the method

PCBs concentration in sediments depending on D_{99} and OM \rightarrow ? flood event influence (movement of particles) on micropollutant concentration (in progress)

	D99 (µm)	OM (%DM)	PCBs (µg/kg DM)	Hg (mg/kg DM)
13 SE S01A	390	3	84 ± 7	0,48
13 SE S01B	166	10	150 ± 1,6	0,29
13 SE S02A	311	6	86 ± 0,8	0,19
14 SE S02C	350	4	116 ± 2,5	0,3
14 SE S02D	539	2	37 ± 1,5	0,16

PCBs and Hg concentration in sediments from the bed (< 2 mm) of Samme River near Ronquières

13/14

PCBs and Hg concentration in suspended sediments collected at Ronquières.

Deployment of a suspended sediment pilot monitoring network in Wallonia:

14/14

Station on the Samme River

- Station installed and operational for more than 12 months on a unnavigable waterway at the outlet of a small catchment (135 km²)
- Sediment budget established at the outlet of the catchment (discharges method) → hysteresis phenomena
- Time integrated sediment quality evaluation in progress

Stations on the Sambre River

- Stations installed for some months
- Challenges associated to a navigable waterway (2 310 km²; W: 40 m)
 - Management of water levels (locks, dams) -> water discharge -> turbidity relation
 - Navigation -> perturbation on fluxes through TIS and sediment trap

Thank you for your attention !

1

Bibliography

- PHILLIPS J. M., RUSSELL M. A., WALLING D. E.. Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrol. Process.. 2000; 14: 2589-2602.
- TESSIER L. Transport et caractérisation des matières en suspension dans le bassin versant de la seine : identification de signatures naturelles et anthropiques. Thèse de doctorat de l'Ecole nationale des ponts et chaussées; 2003. 262 p.