Alternatives to Aquatic Placement Applying Regional Sediment Manufacturing to Innovative Stabilization for Brownfields Beneficial Use

Tipping Point Resources Group, LLC - USA

10<sup>th</sup> International Conference SedNet – *Sediments on the Move* 14 June 2017 / Genoa, Italy

Disposal of Sediments at Sea Session



E.A. Stern, A. Maher<sup>2</sup>, R. Miskewitz, M. Kitazume<sup>3</sup>, D. Yang<sup>4</sup> and A.N. Kovalik

<sup>2</sup>Rutgers University, <sup>3</sup>Tokyo Institute of Technology, <sup>4</sup>JAFEC USA

Beneficial Use of Sediments and Soils Driving Sustainable Economic Growth





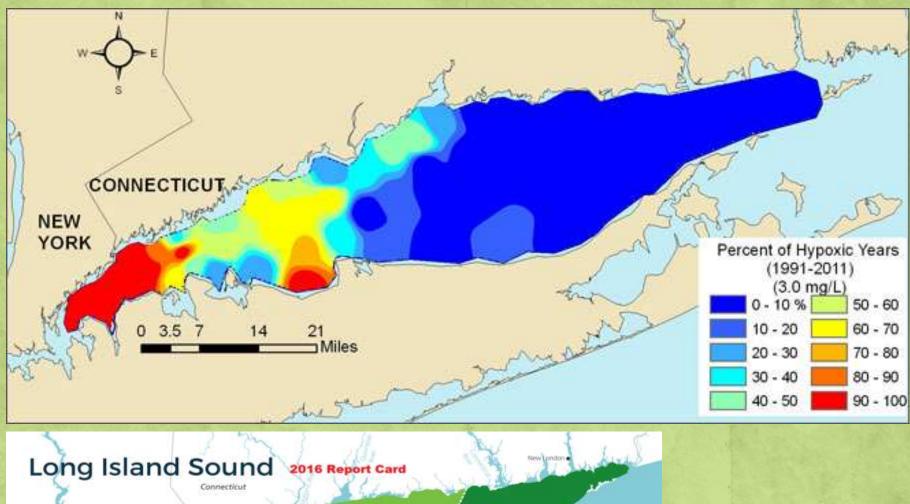
Clean Ocean Action / Highlands, New Jersey

# Aquatic Placement Challenges / Contaminated Sediments

- Disposal/Placement Sites are at Capacity
  Chapter in Placement Criteria (constraint)
  - Changes in Placement Criteria (more stringent)/ sed tox & bioacc
  - New Designation and/or Expansion Siting Feasibility Studies is a long-term process

TIPPING P©INT

- CADs/CDFs (unless you have a Slufter)
  - Loss of benthic habitat and real estate
  - Impacts to critical fisheries/nurseries
  - Commitment to Long-term monitoring/life cycle costs + mitigation / liability
  - Public perception (depend who you ask....)


Impedes technology development = crisis management = €€€ \$\$\$

Decades of Pollution Prevention Programs / Investment?

Growing Costs may Exceed the Benefits

Dredged Material/Contaminated Sediments – Brownfield Integration
 Less Obvious than Obvious









### Regional <u>Manufacturing</u> Facility Objective: Develop Long-term Self Sustaining Enterprises in the Urban Sediment Management of Contaminated Sediments

- Regional NY/NJ/New England Market
- Perfect Storm / 2 20 years
  - Aquatic placement challenges
    - Forgotten marinas, commercial / industrial, municipal
    - 0&M
- Urban Sediment Centers
  - Common sharing of facility for multi-complex projects and technologies/processes
    - Urban Sediment Research Center (basic/applied)
    - Education, Job Training, Internships

- Technology Integration (front and back-end) / Barge to Rail to Placement
  - High / Moderate / Low Contamination
- Regional Beneficial Use / Brownfields
  - Manufactured Soils
  - Stabilized Structural Geotechnical Caps

Benefit: Captures a multi contaminant zone market that minimizes standard industry long haul and dump operation of sediments to landfills which realizes a future in other sustainable approaches

### Connecticut Regional Dredged Material Manufacturing Facility 2017/18 Campaign

#### Anchor Waterfront Regional Facility

- New Haven Terminal
  - Rail to brownfields

### Pneumatic Flow Tube Mixing Process (PFTM) / Stabilization

- Pump to gondola Railroad cars and/or trucks via in barge processing
- Rail to Triangle Wire / Griswold, Connecticut
  - Brownfield residential/commercial development
- 2017/18 Dredging Window
  - 5735 m<sup>3</sup> (demonstration scale/process flow-economics)
  - 230,000 m<sup>3</sup> (2018/19) ++ (383m<sup>3</sup> /day to 1529 m<sup>3</sup> /day full operation

#### PFTM Barge Design with Capability to Operate:

(1) adjacent to land based staging area (small foot print) and pump into RR or trucks to brownfield placement site (s)

 $\checkmark$  (2) on a barge to allow travel to a site and pump directly to site needing upland structural beneficial use material



Heron Construction, Papakura, New Zealand



Bellingham, Washington USA Squalicum Harbor

#### EIS Associates, NY/NJ Harbor

Dredged Material Cement Pug Mill Operations



Pneumatic Flow Tube Mixer and Transport Pipe / Flexibility Pipe and Materials Handling Design





# **PFTM Background**



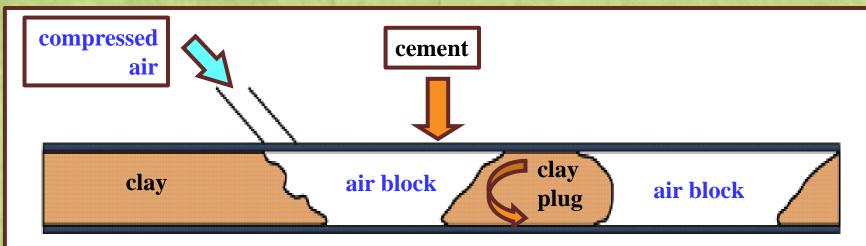
### **Pneumatic Flow Tube Mixing**

- Developed in Japan in early 2000 for large scale reclamation projects using fine silty clay sediments
- Many successful examples including reclamation works for Tokyo (Haneda-2010) and Central Japan (Chubu-2005) Airport Projects.

Kitazume, 2016 CRC Press, ISBN 9781138029842 - CAT# K30201

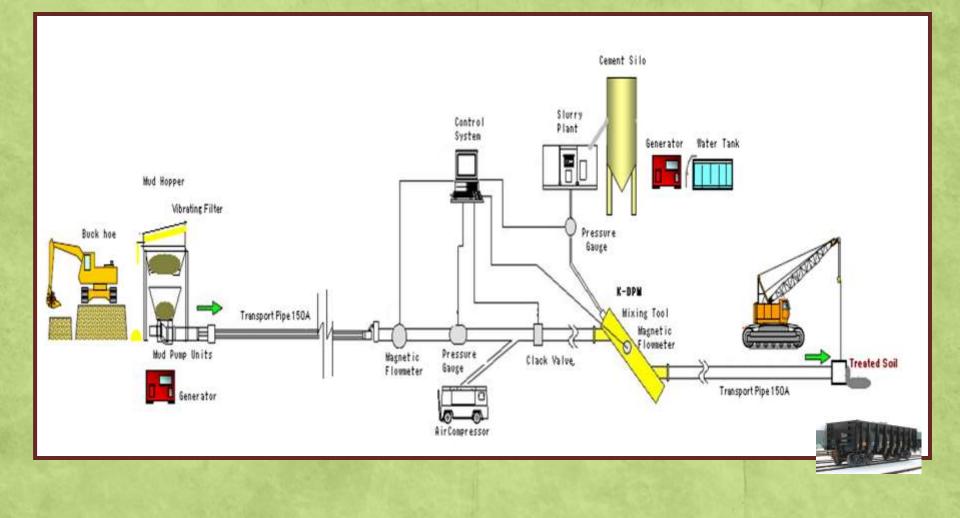


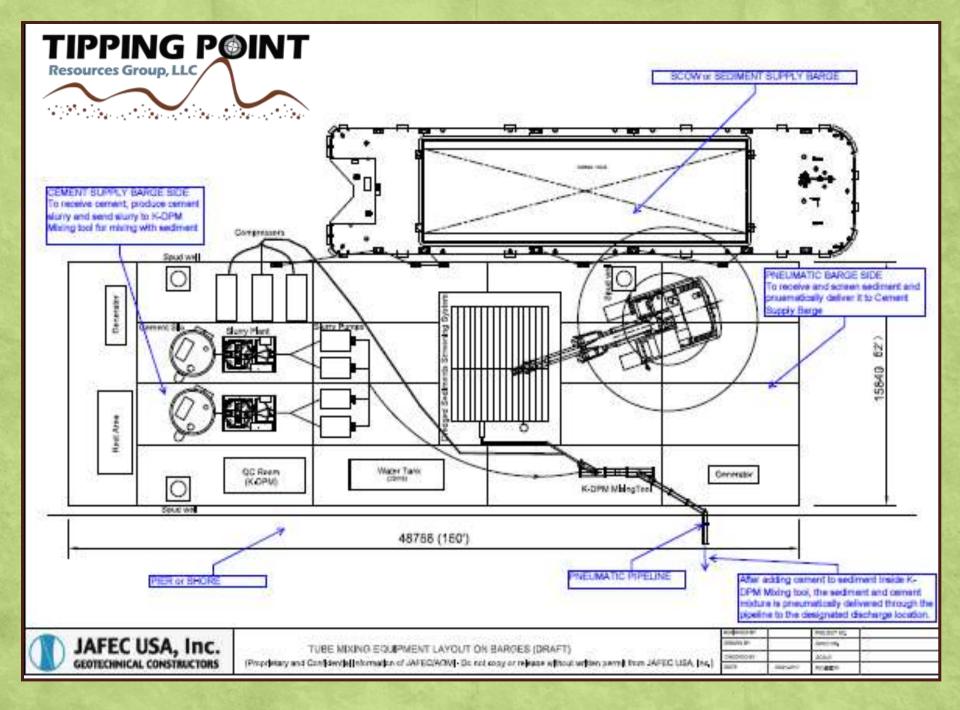
The Pneumatic Flow Mixing Method


Masaki Kitazume



CRC Press


### **Pneumatic Flow Tube Mechanism**


"Soft sediment is broken into "plugs" by compressed air. Plugs reduce pipe surface friction easing flow. During transport cement and clay are mixed by the turbulent flow within the 'plug'." - Kitazume 2002



### **PFTM Process Flow**









# **PFTM Applications**



#### Environmental

- Solidification and Stabilization of contaminated soft sediments
- Rapid and efficient utilization of stored CDF materials
- Landfill covers
- Brownfields (Structural caps)
- Coastal Restoration

#### Structural

- Bulkhead backfills
- Reduction of lateral earth pressures (berm construction for flood control)
- Trench filling
- Structural and non-structural fills
- Shallow improvement
- Liquefaction mitigation and improvement of dynamic response





Upland Beneficial Use of Sediment that Drives Sustainable Economic Growth

# **Off-shore PFTM Airport Construction**

Construction of a man-made island for Central Japan International Airport by the Pneumatic Tube Mixing method

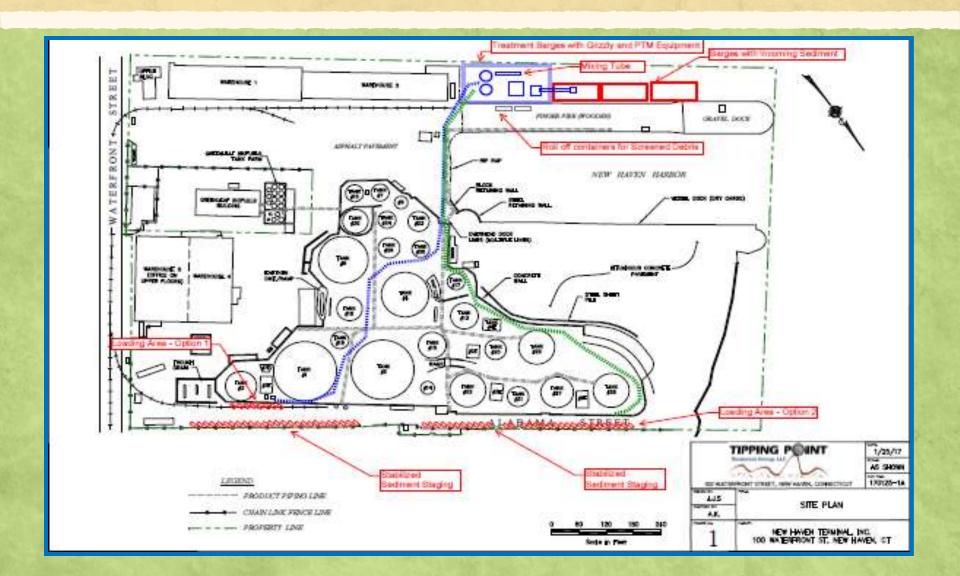
**Placement barge** 

**Pneumatic barge** 

Stabilizing agent supplier barge

Sediment transport barge

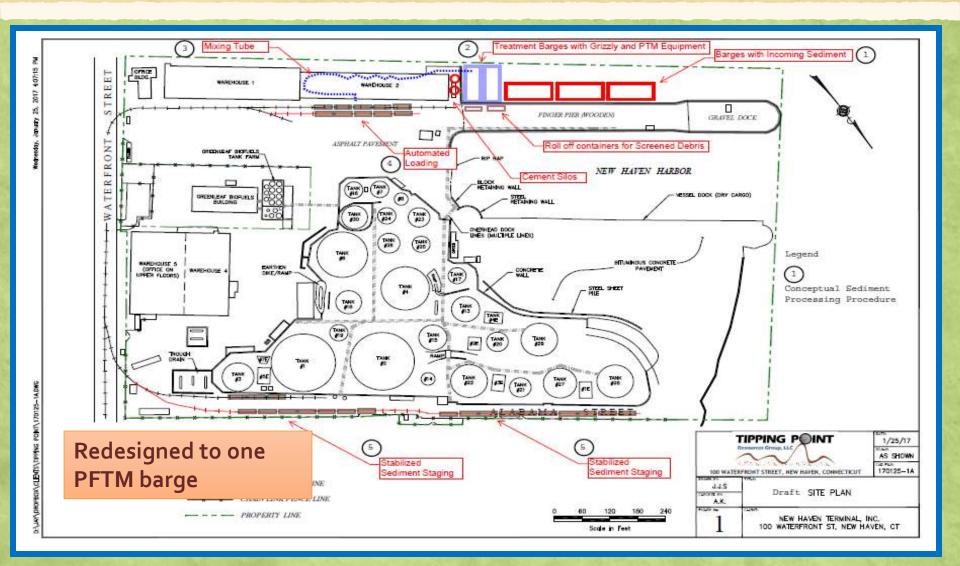



Prof. M. Kitazume Tokyo Institute of Technology Port and Airport Research Institute



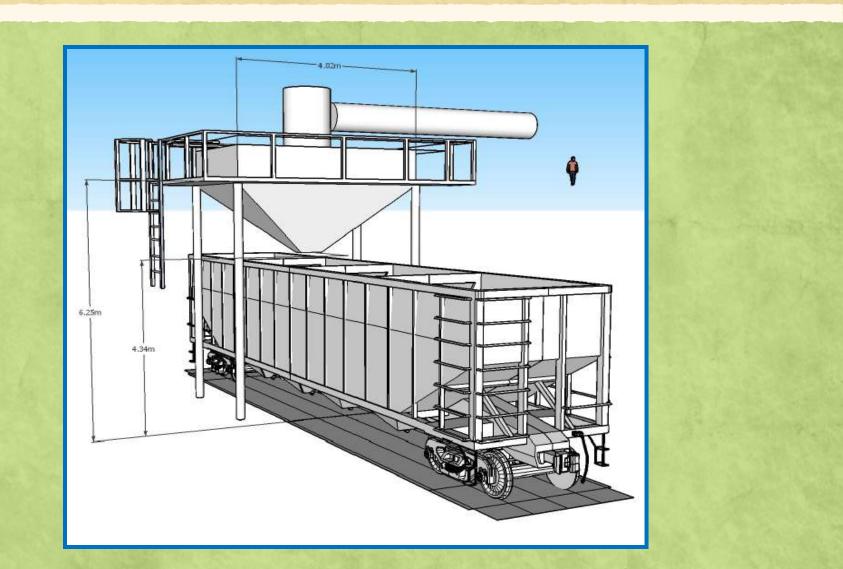
### **Connecticut Regional Manufacturing Processing Facility Dock View to Adjacent Direct Rail**

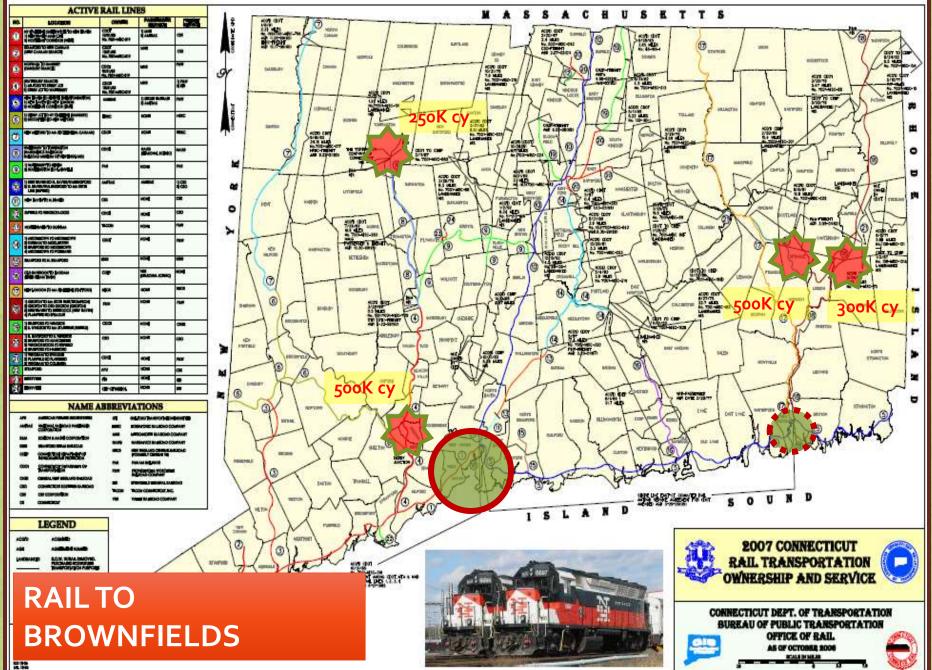



### Evolution # 1 PFTM Pump to Roll-off Truck Option



### Evolution # 2 Processing Directly into Secondary Barge and Excavate and Truck/Rail





### Waterfront Barge Access, PFTM Processing, Rail Loading / Staging, Transport to Brownfield Placement Site -



## **PFTM Gondola Rail Car Loader**







# Sustainable Green Development of a Connecticut Brownfield





Upland Beneficial Use of Sediment that Drives Sustainable Economic Growth

# PFTM New Jersey US Demonstration Project Sponsors / Background

#### Site: Kearny, NJ

Project Title: Utilization of PFTM for processing and stabilization of contaminated soft sediments

#### Sponsor: NJDOT

#### Research team:

- Rutgers/CAIT
- Tokyo Institute of Technology
- JAFEC-USA
- Others

The total amount of material processed during the deployment was 3833+ m<sup>3</sup>

Total of 26 working days, with an average production rate of 165 m<sup>3</sup> per day





Pneumatic Flow Tube Mixer and Transport Pipe / Flexibility Pipe and Materials Handling Design





# **PFTM Delivery + Stabilized PDM**



Upland Beneficial Use of Sediment that Drives Sustainable Economic Growth





## **PFTM Campaign Analytical Test Results**

- All samples were analyzed for total constituent concentrations (mass of contaminant/mass of sample) and for leachate concentration via the SPLP procedure at a NJ certified Laboratory. Analyses included Base Neutral+15, TAL Metals, Pesticides and PCBs (Arochlor)
- <u>SPLP leachate analysis results indicated no detectable mass of any</u> <u>Base Neutrals (PAHs, Pesticides or PCBs)</u> and the only metal found in the leachate was arsenic. The concentrations of Arsenic in the leachate from the raw sediment for the 8% mix were 14.8 and 15.9 µg/L and 3.97, 3.47 and 3.97 µg/L in the stabilized material indicating that 75% of potential leaching arsenic was mitigated by the stabilization procedure
- Chemical analyses indicate that the material <u>is suitable</u> for placement at the site

### NJ PFTM Campaign Conclusions

The results of the laboratory and field experimental program demonstrate the utility of PFTM as a <u>rapid and efficient method for</u> <u>stabilization and placement of soft sediments</u> dredged from the NY/NJ Harbor. The material stabilized using PFTM had <u>uniform geotechnical</u> <u>properties and acceptable chemical properties</u> resulting in a high potential for beneficial use

### **Progress:**



- CT DEEP Solid Waste Demonstration Project Permit
- Brownfield permitting
- JAFEC USA/Japan Design
  - Barge / re-design of grizzly/shaker system
- Rail infrastructure /sidings /transportation logistics
  - Including brownfield off loading at terminus
- Source material / Demonstration Life Cycle (Engineering, Economics, Beneficial Use, Integrated Program (s) Analysis) / comfort zone.....
- Regional markets (CT,RI, MA, NH, ME)
- Education/outreach
- R&D / dosing + cement replacements

## Beneficial Use Programs / Treatment and Materials Science

- Sedi.Port.Sil
- CEAMas
- SETARMS
- SEDILAB
- EcoSed
- GeDSET
- Sedimateriaux Approach
- New York/New Jersey Harbor Sediment Decontamination Program (USEPA/NJDOT/BNL)
  - Changing perception of sediments as a waste to a sustainable resource

