

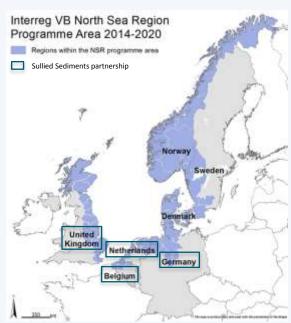
Set-up of a Decision Support Tool for the remediation of contaminated sediments

Interreg project Sullied Sediments

Anissa Smits – Witteveen+Bos Belgium 4 April 2019

Contents of this presentation

- Interreg Project: Sullied Sediments
- Objectives of the Decision Support Tool
- Set-up of the Decision Support Tool



Interreg - Sullied Sediments

European program:

- Interregional cooperation within EU
- Information exchange
- Partners from the North Sea Region
- Belgium: OVAM
 - = Public Waste Agency of Flanders

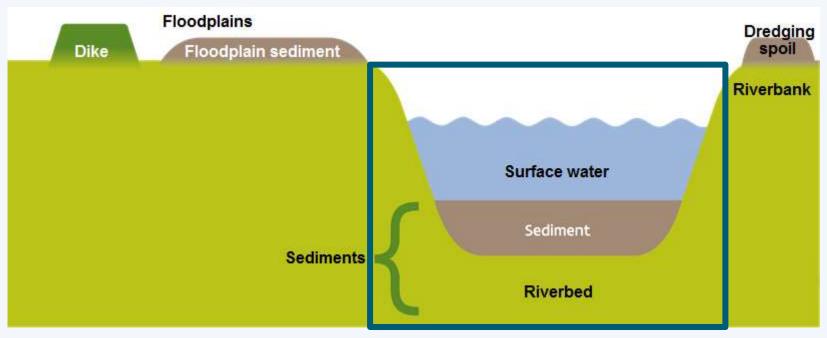
Interreg - Sullied Sediments Goals

Improve:

- 1. Risk assessment of (emerging) contaminants in sediments
- 2. <u>Treatment (in situ and ex situ)</u> and possibilities for reuse of contaminated sediments
- 3. Prevention of sediment contamination by raising awareness

Objectives of the Decision Support Tool

- To create a central knowledge sharing platform on sediment remediation techniques
- To help choosing an optimal technique
- Updated frequently
- Users:
 - Soil/sediment remediation experts
 - Policy makers
 - Problem owners (e.g. industry)
 - Other stakeholders (e.g. waterway managers, etc.)



Objectives of the Decision Support Tool

- Focus on technical feasibility of techniques
- First step in cost-benefit evaluations
- Applicable in Flanders (legally and technically)
- Experimental techniques are included
- Sediments ≠soil, but for now some proven techniques for soil remediation are also included

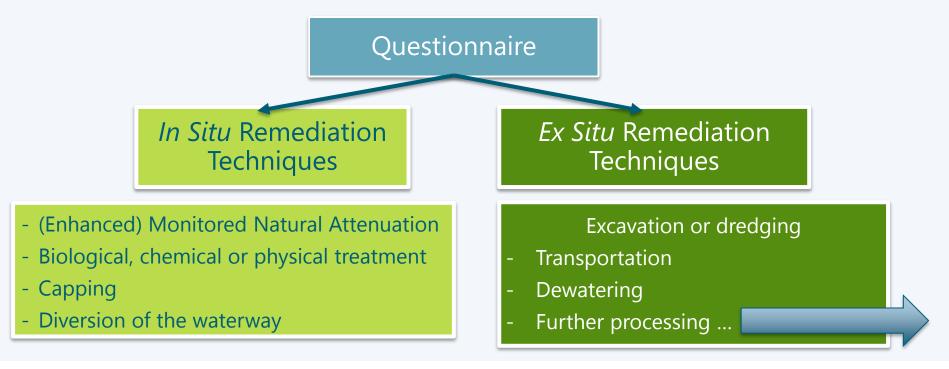
Sediments ≠soil

Ref: OVAM

Sediment vs. soil remediation

	Sediments	Soil	
Grain size	Relatively small (clayey, loamy)	More varied	
Water content	High (20-60% dry matter)	Low (>80% dm)	
Organic content	Relatively high (>2%)	Limited organic content (<2%)	
Contamination	Typical: heavy metals, mineral oils (>C14), PAHs	More varied	
Degree of contamination	Relatively low Relatively high		
Volumes	Large	Usually smaller	
Other	Occurrence of specific problem parameters such as TBT	Usually contains rocks, bricks, building- or demolition waste	

Ref: DEC & Envisan

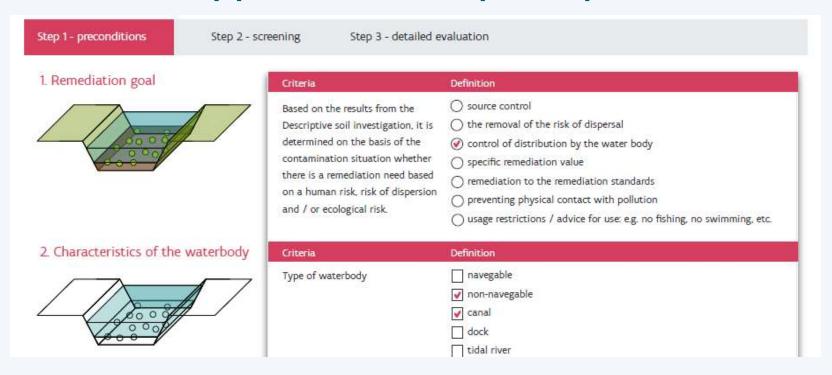

Set-up of the Decision Support Tool

Based on:

- ITRC: Remedy Selection Tool for Contaminated Sediments https://www.itrcweb.org/contseds_remedy-selection/
- EMIS-VITO: BOSS (BOdemsaneringsSelectieSysteem)*
 https://emis.vito.be/nl/boss-bodemsaneringsselectiesysteem
- SedNet: Sustainable Management of Sediment Resources, Vol. 2 Sediment and Dredged Material Treatment

Decision Support Tool – Flow

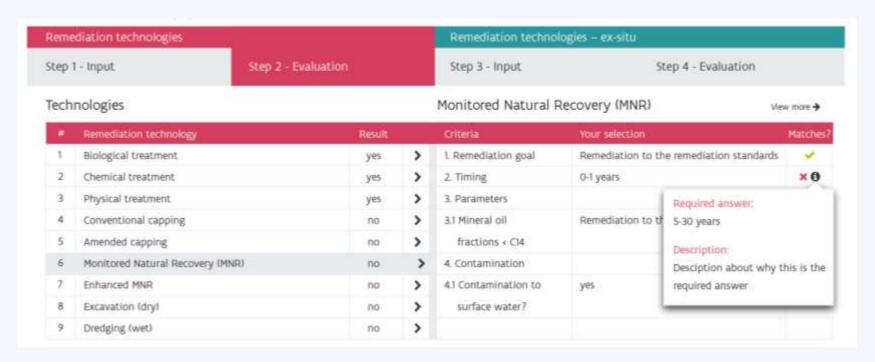
Decision Support Tool – Flow: Ex Situ Techniques


Decision Support Tool – Questionnaire

Selection criteria – partially based on soil remediation:

- Remediation goals
- Timing
- Waterbody characteristics
- Sediment characteristics
- Contamination characteristics
- Accessibility, etc.

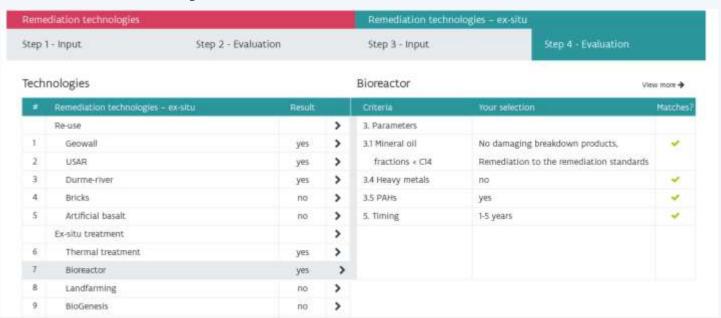
Decision Support Tool – step 1: input user


Behind the scenes: example for MNA

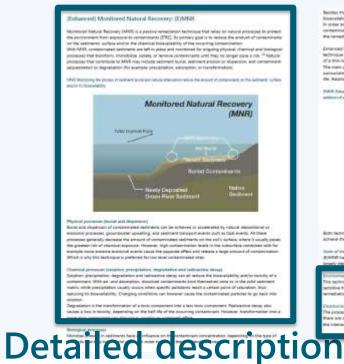
Evaluation by the tool

Essential criteria			MNA
Remediation goal		Removal to guide value	no
		Removal to risk limit value	*
		Control spreading If user answers YES	maybe
		User advise / limitation	yes
Timing		0-1 year	no
		1-5 years	no
		5-30 years	yes
Type(s) of contaminant	Mineral oil fractions < C14	Biological degradation	yes
		Mobility and ab- and adsorption potential	yes
		No harmful degradation products	yes
		Relatively low concentrations	yes
		Removal to risk limit value	yes
	Other		
Spreading of contamination		Contaminants present in groundwater or risk of spreading towards groundwater	no
		Risk of spreading to surface water	no
Waterway characteristics		Navigable / maintenance dredging necessary	no
		Susceptible to erosion	no

Decision Support Tool – Step 2: Evaluation



Decision Support Tool – Step 3: Additional input user for *ex situ* techniques



Decision Support Tool – Step 4: Evaluation *ex situ* techniques

Technical info pages: example for MNA

of affectiveness and durability. Contamination is field in place? for some time, which is often met with reciproral from the public. Under person Case studies stimule be made books browner, that trains a section of little (TRE) in Alle Craft Late Forward, Robert Durry, VC-ERC 113 houses weath of former No-Gard and 156 for other funder 1986 Tomb. percol Tube Harbord. named of principal princip or named, unfamiliar 1964) he Touton SMa Count and of Lake Perhoad. errary succe-of the contentrates is a company named language shorter who uses PGs from 1865 to 1977. closed but I's of the years weapy arount of ICB uses, appropriately 20,100,000 pounds within a being ment into Train Chaid: which is a reflatour to Tanha. Allia Colab and June National well Kit conversions in a 111 tomory sheet of feeder the laws, over cognitive research between 1-1 years the and tight to deep actions. It is not beginn committee at to \$1 age. T.E. sate based. To efficial and the arted communicates and a first term of the contraction of the contract CREATED CONTRACTOR OF THE CONTRACTOR OF THE CREATED CONTRACTOR CONTRACTOR OF THE CREATED CONTRAC and the companion of the Company Will accompanion to continuous to the boundary and of the continuous appeals to page incurren 2 year POEs with bound on terrest principalisation. This personal was recombined to the reachest within 1,2 water the on They do noticed for higher 40s were being bured between ladment with over 40s propriations. transformers (Abstract products of religions accomplished to the product of the St. of t acted to believe the facility of W.S. is the course over two and brook of the course contract that W.S. complements in union column and purioners of Labor Francis models' permitty decrease more treat most to the absence of any columns. min. Te anney nechaning to PO reactive our title see insultry biroost and burt and the contract received increases in contract to the parties of the contract nations in Tuesta, Mile Date and Late Hornal and Intelligible time analysis in Late Hornald and best from 2004 invicated that purities assistant PCS comparestors in Treat-e-18th Creat have becaused results. COM year to program physical printerest made on burder recomplishasement, and ICE distributions, Houseon, ICE maken in this cast our manage or maken OCS was decrear than text of the Trial degree on the Trainal Alda Creak-borrow Lake Flormant has no be demokrated to many EVI at his proof year of magnitude making make his proposal his test principle of more first of

If appropriate for the cits constructs, if billish is a washely easy, two-cost, true-lish appoint that provide a high saw.

Tool = work in progress

- More practical experience is needed
- Next phase: stakeholders will be involved
- Techniques will be updated (added / deleted) frequently
- Suggestions are always welcome!

Thank you for your attention