Design of a Remediation Approach to Heavy Metals Contaminated Sediments in the Great Backa Canal (Serbia)

<u>Jelena Tričković</u>¹, Dejan Krčmar¹, Srđan Rončević¹, Božo Dalmacija¹, Nemanja Stanić², Srđan Nikoletić², Zoran Gregorović³

¹University of Novi Sad, Faculty of Sciences, Novi Sad, Serbia

²Hydrozavod DTD, Novi Sad, Serbia

³Public Water Management Company "Vode Vojvodine", Novi Sad, Serbia

Great Backa Canal (GBC)

- 118 km long and 25 m wide engineered canal built at turn of the 19th century.
- Integrated part of the large Danube-Tisa-Danube Hydro-system (DTD system).
- Main functions:
 - Drainage
 - Irrigation
 - Water supply for industrial users
 - Recipient of wastewaters
 - Navigation
 - Fishery and forestry
 - Tourism, sport and recreation

Site background

 Until 2010 11 large industrial plants discharged untreated or partially treated waters (mostly food – sugar, oil, meat

1000 – Sugar, Oli, Meat			VRBAS LOCK
	INDUSTRY	WWT	idustrial sai Si
Food (meat processing)		Tertiary	Zone KC III→ Industrial 25 Zone S14 S20 S21 S17 S15 S16 S17 S16 S16 S16 S16 S16 S16 S16 S16
	Agriculture	Primary	Complete Star
	Food	No treatment	CITY 58
	Food (edible oil)	Secondary	57 Test
	Municipal	No treatment	
	Municipal	No treatment	
	Food	Secondary	
	Food (sugar)	Primary	17900 m ³ of WW/day
	Food (sugar)	Primary	2820 kg BOD/day
	Leather	No treatment	8% compliance with ELV
	Metal	Primary	
	Food	Primary	
3	11	th International SedNet	Conference, Dubrovnik, 2019 April

Industrial zone Great Backa Canal

Problem #1: Sediment quantity

 Water depth at some points does not exceed 30-40 cm and 90% of canal bottom is covered with accumulated sediments – cca.

Problem #2: Sediment quality – Spatial distribution of pollution

- Main problem: heavy metals – Cu, Cr, Zn, Ni
- Organic pollutants are generally not present or present at low concentrations
- Microbiology: faecal coliforms

Problem #2: Sediment quality – Vertical distribution of pollution

Total quantity of sediment of 1 and 2 class:	~ 96 000 m ³
Total quantity of sediment of 3 class:	~ 94 000 m ³
Total quantity of sediment of 4 class:	~ 179 000 m ³
TOTAL	$\sim 369\ 000\ m^3$

Assessment of the sediment quality using a variety of criteria – 2012 campaign

Samplin g site	Serbian national EQS	> PEL	SEM/AVS	RAC	CF > 6	PLI > 1	EF 10-25
0.000 t	4 (Cr, Cu)	Cr, Cu		Zn, Ni	Cr, Cu	+	
0.800 t	4 (Cu)	Cr, Cu, Pb			Cu, Pb	+	
0.800 m	3 (Cu, Ni)			Ni	Cu	+	
2.000 t	4 (Cr, Cu, Ni, Zn)	Cd, Cr, Cu, Ni, Zn, Pb		Zn	Cr, Cu, Pb, Ni, Zn	+	Cr, Cu, Ni, Zn
2.000 m	4 (Cu, Cr)	Cu, Cr		Zn, Ni	Cr, Cu	+	Cr, Cu
2.000 b	3 (Cu, Ni)	Cr		Zn, Ni	Cu, Ni, Zn	+	
2.900 t	4 (Cu, Ni, Zn)	Cu, Cr, Pb, Zn		Zn, Ni	Cu, Ni, Zn	+	Cu
2.900 m	4 (Cu, Ni, Zn)	Cd, Cr, Cu, Pb, Zn		Zn, Ni	Cu, Ni, Zn	+	Cu, Ni, Zn
4.000 t	4 (Cr, Cu, Ni, Zn, Pb)	Cd, Cr, Cu, Pb, Zn	+	Zn, Ni	Cu, Ni, Zn	+	Cr, Cu, Ni, Zn
4.000 m	4 (Cr, Cu, Ni, Zn)	Cd, Cr, Cu, Pb, Zn		Zn, Ni	Cr, Cu, Pb, Ni, Zn	+	Cr, Cu, Zn
4.000 b	4 (Cu, Cr, Zn)	Cr, Cu, Pb, Zn		Zn, Ni	Cr, Cu, Zn	+	Cr, Cu
4.900 t	4 (Cu, Ni, Zn)	Cd, Cr, Cu, Pb, Zn		Zn, Ni	Cr, Cu, Zn, Ni	+	Cu, Zn
4.900 m	4 (Cu, Ni, Zn)	Cd, Cr, Cu, Zn		Zn, Ni	Cr, Cu, Zn, Ni	+	Cu, Zn
4.900 b	4 (Cr, Cu)	Cr, Cu, Zn		Zn, Ni	Cu, Cr	+	Cr, Cu
5.800 t	4 (Cu)	Cr, Cu, Zn	Krčmar et al. (201	Zn, Ni	Cu, Zn	+ ence and H	Cu
5 800 m	3 (Cu_Ni)			Zn	Cu	+	ounn, r un A, 40,

Remediation of GBC

- The goal is to <u>restore full function</u> of canal which requires removal of contaminated and noncontaminated sediment from canal, its transport, treatment and disposal in environmentally safe way.
- Pre-feasibility study and General design propose technical solutions for:
 - sediment dredging;

- sediment transport to landfills (3 sites are foreseen by Pre-Feasibility Study);
- temporary storage and dewatering,
- treatment of contaminated;
- final disposal and/or beneficial use.

Sediment dredging

- Hydraulic dredging:
 - Favorable due to less sediment disturbances and impacts downstream
 - No road transport needed for dredged material
- Mechanical dredging:
 - Gives dredged material with less water significantly shortens treatment cycle (ecpecially critical dewatering phase)

Dewatering and interim/final storage

Sanitary landfill leachate treatment

	Coagul	ant dosa	EQS	EQS					
	0	50	100	200	500	1000	2nd class	3rd class	
Metal	Metals [µg/L]								
Cu	68.8	10.14	6.58	5.65	1.43	2.29	40	500	
Ni	19.38	3.46	3.08	3.7	16.87	17.61	20	20	
Cr	17.11	2.33	1.49	0.69	0.86	1.08	50	100	
Zn	173.77	14.28	14.66	24.55	5.52	27.35	1000	2000	
Cd	0.48	0.06	0.08	0.13	0.03	0.05	0.45	0.6	
As	19.39	20.3	13.05	10.4	10.9	16.82	10	50	
Pb	20.5	1.96	2.2	0.57	0.43	0.5	7.2	7.2	
Fe	6199	592.8	345.6	551.7	12684	28186	500	1000	
Mn	173.5	88.39	146.9	360.6	962.3	1802	100	300	

- ▶ 200 g FeCl₃/m³
- 2 h residence time

Sediment remediation technology options

Contaminant group	Biological treatment	Dechlorination	Soil washing	Solvent extraction	Solidification/ stabilization	Incineration	Thermal desorption
Organics							
Halogenated volatiles	o	о	+	о	×	÷	о
Nonhalogenated volatiles	0	x	+	о	x	+	0
Halogenated semivolatiles	+	+	0	0	×	+	o
Nonhalogenated semivolatiles	+	x	0	0	×	+	0
PCBs	0	+	0	+	0	+	+
Pesticides	0	0	о	0	0	0	о
Dioxins/furans	x	+	0	0	x	+	o
Organic corrosives	×	×	0	0	+	0	×
Organic cyanides	+	×	0	0	0	0	о
Inorganics							
Nonvolatile metals	×	×	0	x	+	x	×
Inorganic corrosives	×	×	0	x	+	x	x
Inorganic cyanides	0	x	Ō	x	+	0	x

TABLE 3-1. INITIAL SCREENING BY CONTAMINANT GROUP

Legend

- + Demonstrated effectiveness: Successful treatability test at some scale completed.
- O Potential effectiveness but not demonstrated: Expert opinion that technology will work.
- x No expected effectiveness
- U Unspecified. Insufficient data available for adequate evaluation.

Source: Selecting Remediation Techniques For Contaminated Sediment, USEPA (1993)

Solidification/stabilization (S/S) treatment

 Local clay (C) was used as S/S agent and it was mixed with the dried sediment (40% of moisture) in the following proportions:

From 5:95 wt. - 90:10 wt.

- The mixtures were then homogenized on a milling machine using sieves with 3 mm pores.
- The compaction was performed according to ASTM D1557-00 (ASTM, 2000), providing a compactive force of 2700 kN m/m³.

Krcmar, D., Dalmacija, M., Dalmacija, B., Prica, M., Trickovic, J., Karlovic, E. (2013) Evaluating the necessity for thermal treatment in clay-based metal immobilization techniques as an environmentally acceptable sediment remediation process. *Journal of Soils and Sediments* 13 (7), pp. 1318-1326.

Additional thermal treatment

- Carried out in an electrical furnace at a constant temperature of 1050±5°C with variations in heating rate (4.6 °C/min from 25°C to 300°C, 1.7 °C/min from 300°C to maximum T, 5h hold at max T).
- Samples were cured at 20°C in sealed sample bags for 28 days and then subjected to series of leachability tests for treatment efficiency.

Krcmar, D., Dalmacija, M., Dalmacija, B., Prica, M., Trickovic, J., Karlovic, E. (2013) Evaluating the necessity for thermal treatment in clay-based metal immobilization techniques as an environmentally acceptable sediment remediation process. *Journal of Soils and Sediments* 13 (7), pp. 1318-1326.

S/S treatment efficiency ANS test - Mean leachability indices (LX)

	Metals						
Samples	Cr	Ni	Cu	Zn	Cd	Pb	
S0	5.2	5.4	6.1	5.7	6	6.2	
C5	10.6	12	13.4	12.7	13.3	13.4	
C10	10.5	12	13.4	12.9	13.3	13.6	
C20	9.8	12.1	13.5	13	13.3	13.6	
C50	9.3	12.2	13.6	13	13.4	13.8	
C80	9.3	12.4	13.7	13	13.6	13.8	
C90	9.2	12.6	13.8	13.1	13.7	13.9	
T5	11.4	14	14.3	14.2	14.3	14.4	
T10	11.2	14.2	14.5	14.3	14.4	14.5	
T20	11.3	14.2	14.5	14.4	14.4	14.6	
T50	11.2	14.3	14.6	14.5	14.6	14.7	
T80	11.2	14.4	14.7	14.5	14.6	14.8	
T90	11	14.5	14.8	14.7	14.8	14.9	

- Suitable for both beneficial use (LX > 9) or disposal at sanitary landfill (LX > 8).
- Thermal treatment is economically justified only if beneficial use of final S/S material is

S0 – untreated sediment sample, C – non-thermally treated samples, T – thermally treated samples, numbers 5, 10, 20, 50, 80 and 90 in sediment samples stands for percentage (%) of clay present (wt.)

Option analysis

OPTIONS								
1	2	3	4	5				
Hydraulic dredging dredging		Hydraulic dredging dredging		Hydraulic dredging (and excavation)				
Dewat temporary/ (cas	ering on /interim sites settes)	Dewatering of cent	Dewatering of the sludge with centrifuge					
S/S treatment of sediments – dynamics is determined by the speed of dewatering process	S/S treatment of	sediments by dr	edging dynamics	No treatment				
Permanent disposal in sanitary landfill and / or beneficial use of stabilized material								

Socio-economic analysis (MCDM - Electre)

Criteria	Total investmen t	Total cost	Cost of sediment treatment	Total time for project completio n	Duration of sediment treatment	Residual value of equipment	Environment al impact		
Unit	EUR	EUR	EUR	Months	Months	EUR	/		
Option 1	5,947,411	5,922,343	927,390	86	52	489,831	Good (3)		
Option 2	9,550,033	5,179,573	618,099	25	10	4,527,458	Weak (1)		
Option 3	8,286,349	4,247,431	991,677	22	7	4,557,966	Very good (4)		
Option 4	8,266,515	4,326,172	960,081	22	7	6,666,864	Weak (1)		
Option 5	4,694,199	4,642,758	0	322	/	0	Acceptable (2)		
Goal	Min	Min	Min	Min	Min	Min	Max		
			Weight	coefficients					
Alternative									
1	0.2	0.2	0.2	0.1	0.1	0.1	0.1		
Alternative 2	ive 1: Opti 0.2	on 3 <u>–</u> exc 0.2	avation ar	nd transpoi	t of sedim	ent through	urban area		
Altenharvet	ive 2: Opti	on 1 – Ien	ghty, but lo	w investm	ent cost ai	nd environr	nentally sound		
Alternat	³ Alternative 9:30ption 9.2 the cheapest option, but public acceptance might be a problem								

17

The most preferred option – Option 1

Preconditions and next steps

- Building sewarage network and connecting all polluters (communal, private, industrial) to the newly built municipal WWTP,
- Remediation of lateral GBCs D61 and D64 to avoid future re-pollution,
- No further "temporary" disposal of dredging material from lateral GBCs (assumed polluted),
- Cleaning of GBC up-stream of Vrbas lock to avoid future re-pollution.

Thank you for your attention!

University of Novi Sad Faculty of Sciences Department of Chemistry, Biochemistry and Environmental Protection

Trg Dositeja Obradovića 3 21000 Novi Sad jelena.trickovic@dh.uns.ac.rs

20

11th International SedNet Conference, Dubrovnik, 2019 April

3-5