

VALSE

Mineral processing techniques dedicated to the recycling of river sediments to produced raw materials for construction sector

Mathieu HENRY Centre Terre et Pierre, Tournai (Belgium)

LE FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL ET LA WALLONIE INVESTISSENT DANS VOTRE AVENIR

www.enmieux.be

RIVER SEDIMENTS

VALSE

• Regular dredging to maintain shipping and hydraulic flow

	Annual dredging (m³⁄year)	Inland waterways (km)			
Flanders	1.850.000	990			
Wallonia	120.000 to 250.000	450			
France	2.800.000	8.501			

- Generally considered as waste: therefore landfilled
- However, potential source of mineral materials:
 - Granulates
 - Sand
 - Silt
 - Clay

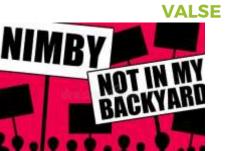
Mainly for building sector

- Can be obtained by mineral processing techniques:
 - Simple
 - Cheap
 - Without chemicals

CHALLENGES IN THE USE OF SEDIMENTS

 Social: Citizen acceptance of construction materials made from secondary and polluted materials


- Legislation:
 - Lower and lower organic and inorganic pollutants maximum levels, without taking account (or lesser) to leaching behavior
 - Stringent legislations in valorization: doesn't allow all valorizations
- Economics: treatment costs in addition of dredging, transportation,... costs
 - Calcination: generally expensive (> 90€/ton DM)
 - Stabilization/solidification: use of reactants, generally expensive (50-75€/ton DM)
 - Size classification: lot of steps (± 30€/ton DM)


But also technical/scientific challenges

• Flotation: use of expensive reactants (10-40€/ton DM)

In comparison with cheap materials (clay [40-50€/ton], sand [± 40€/ton], ...)

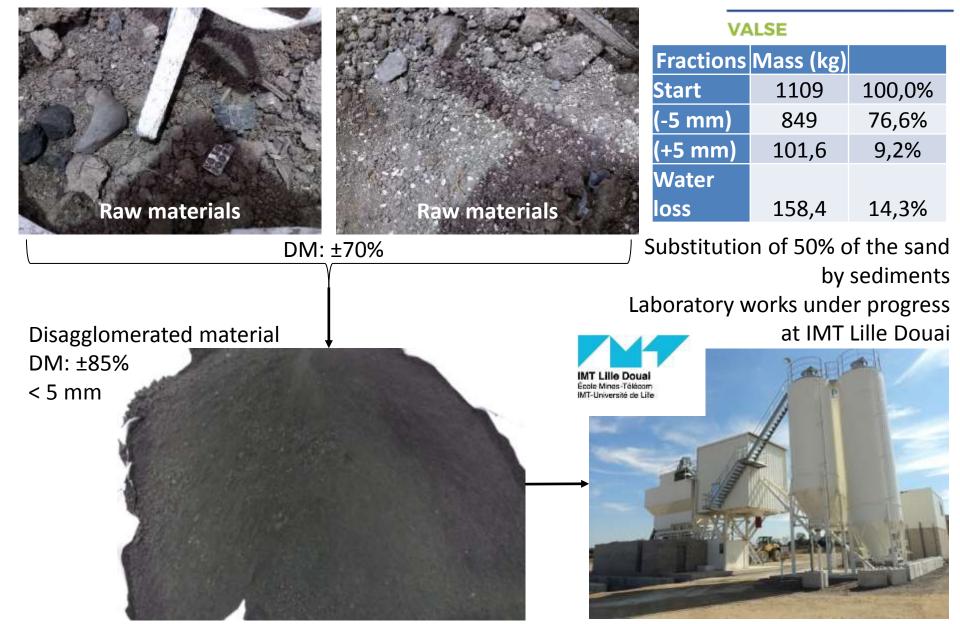
VALSE

River sediments	Building materials	Dehydration	Size classification	Organic matter	Pollutants (organics and inorganics)	Crystalline phases	Other
	Concrete		Х	Х			Increase of water demand
Raw	Road Building	Х	Х	Х	Х	Х	
	Cement	Х		Х	Х		
	Asphalt		Х		Х		
Granulates	Concrete		Х				
Granulates	Road Building		Х				
Sand	Concrete			Х			
	Road Building			Х	Х	Х	
Silt	Embankment			Х	Х		
Fines (Clay / fine silt)	Brick			х	х	х	 Brick aspect (color, efflorescence) ↗ porosity and water adsorption (thawing freeze)
	Expanded clay				х	х	 SiO₂ and Al₂O₃ contents modify viscosity Lack of iron oxide

DIRECT INTEGRATION OF RIVER SEDIMENTS IN CONCRETE

VALSE

Combination of sieving, drying and disagglomeration to create a bicycle path in concrete with sediment


Drving

Exogenous: stones, bottles,

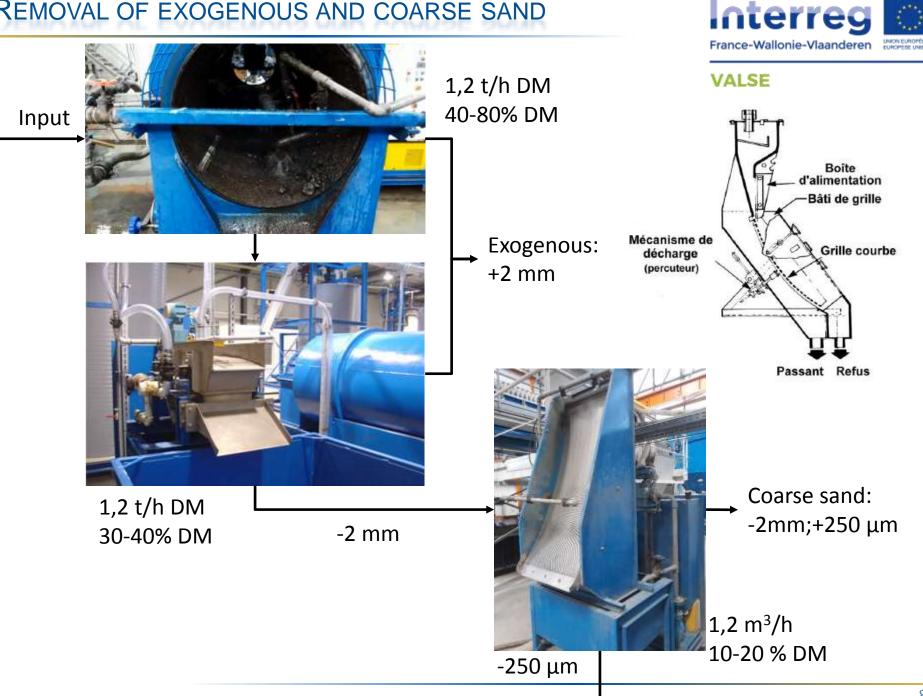
DIRECT INTEGRATION OF RIVER SEDIMENTS IN CONCRETE

MINERAL PROCESSING TREATMENT

- Aim: separate sediment components:
 - +2 mm: all exogenous (stones, wood, bottle, glass,...)
 - -2 mm; +250 µm: coarse sand

- -250; +63 µm: fine sand
- -63; +15 μm: silt

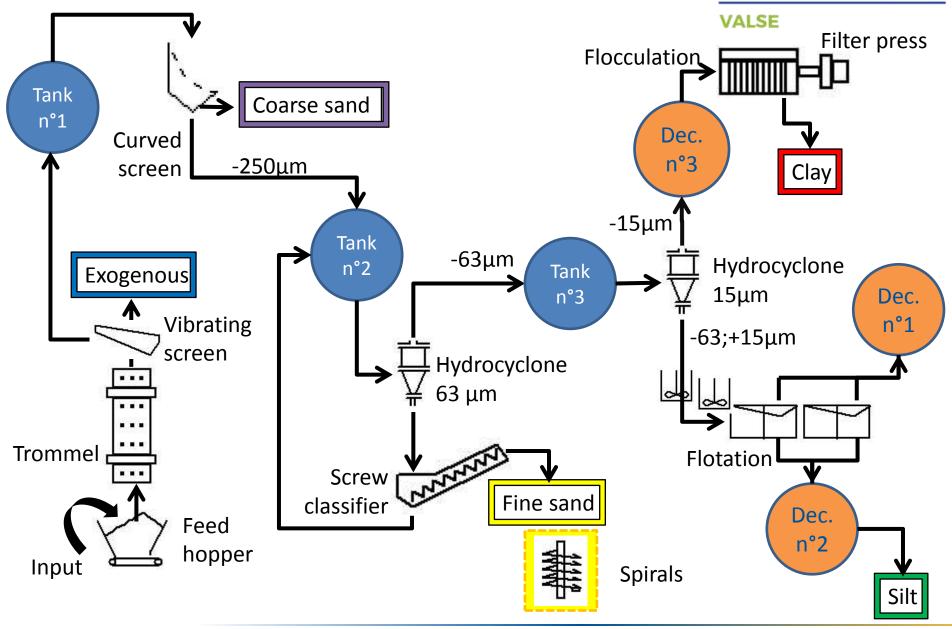
-250µm +63µm



VALSE

-15 μ m: clay and fine silt

REMOVAL OF EXOGENOUS AND COARSE SAND


SEPARATION OF SILT AND CLAY

DM: 15-40%

MINERAL PROCESSING TREATMENT

MINERAL PROCESSING PILOT PLANT FOR SEDIMENTS

VALSE

RESULTS

VALSE

• Material balance

Products	Particle size	M _{wet}	Dry matter	M _{dry}		
Troducts	distribution	(kg)	(%)	(kg)	(%)	
Input	raw	22.635	42,0	9.507	-	
Exogenous	1.3 mm	2.666	72,4	1.930	20,2	
	+3 mm	780	72,4	565	5,9	
Coarse sand	-3 mm +250 μm	1.073	50,0	537	5,6	
Fine sand	-250 μm +63 μm	2.993	75,0	2.245	23,5	
Silt	-63 μm +15 μm	703	46,5	327	3,4	
Clay / fine silt	-15 μm	4.570	57,9	2.648	27,8	
Loss	-	3.625	35,4	1.282	13,4	
	Total : 9.533					

• Pollutants distribution

	Heavy metals	AGW 1995		1	Coores cond	F ine could	C:IT	Clay /
on	(mg/kg dry)	Cat.A	Cat.B	Input	Coarse sand	Fine sand	Silt	fine silt
	Hg	1,5	15	1,0	0,6	0,3	0,8	0,3
	As	50	100	42,3	37,3	13,9	20,0	58,9
	Cd	6	30	18,1	21,0	1,8	7,5	66,7
	Со	25	100	12,7	10,5	16,2	11,7	13,5
	Cr	200	460	203,7	123,3	81,8	86,8	378,2
	Cr _{tot}	-	-	224,0	146,7	130,5	110,8	419,5
	Cu	150	420	58,3	48,8	67,0	42,0	83,3
	Ni	75	300	43,9	35,0	67,3	35,5	44,4
	Pb	250	1500	4.897,6	3.938,1	416,6	1.909,0	10.967,9
	Zn	1200	2400	17.923,3	13.254,3	1.752,8	6.585,9	36.273,1

Pollutants levels according to

VALSE

Economic study of 100.000 tons/year (dry matter) plant building in Wallonia (2010) and based over the pilot plant (with the scheme given previously)

- Investment: 7.346.464€
- Operational costs: 2.878.440€ namely ± 29€/tons (without outlet costs)
- Net present value: 2.748.433€ after 10 years (taking account outlet costs) If: 18% valorized as sand, 40% used as non-polluted sediment and 42% landfilled Depreciation: 10%/y during 10 years
- Cost-effectiveness at 83.405 tons
- High sensibility:
 - Public contract remains at 82€/tons
 - Sand fraction still commercialized
 - Silts and gravels without contamination
 - Conversion yield reached and maintained
 - Valorization market maintained
 - Outlet costs remain stable

CONCLUSION

After characterization, river sediments can be used in building materials: VALSE

- Direct integration in concrete: sieving, drying and deagglomeration necessary
- Extraction of valuable materials
 - Pilot plant for sediment treatment available for testing purpose in CTP (Tournai, Belgium)
 - Based on particle size fractionation
 - Allows to concentrate pollutants in smallest fractions
 - Economically viable if the plant works efficiently and low uncertainty in raw sediment supplying and outgoing products markets
- Recommendations to authorities and market participants:
 - Coherent legislations between regions concerning highest limits and definition of hazardous components, allowed valorization ways
 - Working on citizen acceptance to demonstrate the non-hazardousness of reusing sediment
 - Create a sustainable sector for using valuable materials, namely a link between dredgers and raw materials consumer (e.g. brick producer, concrete producer,...)

ACKNOWLEDGEMENT

France-Wallonie-Vlaanderen

UNION EUROPÉENNE EUROPESE UNIE

VALSE

www.enmieux.be

- Agreement number: 3.5.161
- Project duration: 4 years
- Funding: 4.157.724,61 €

, including ERDF (2.078.862,28 €)

LE FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL ET LA WALLONIE INVESTISSENT DANS VOTRE AVENIR

VALSE

Thank you for your attention

Centre Terre et Pierre asbl Mathieu HENRY *Chercheur* Chaussée d'Antoing, 55 B-7500 Tournai, Belgique T: +32 (0)69 88 42 31 <u>mathieu.henry@ctp.be</u> www.ctp.be