

VALSE

DEVELOPMENT OF ELECTROCHEMICAL METHODS FOR FIELD DETECTION OF TRACE METALS IN SEDIMENTS

Marija Marguš, Pierre-Jean Superville, Ludovic Lesven, Gabriel Billon, Valérie Laperche

> U-Lille-CNRS / LASIR / Equipe PCE / France IRB / ZIMO / Zagreb BRGM / BRGM / Orléans / France

11th International SedNet Conference, Dubrovnik, April 2019

Trace metals and electrochemistry

Electrochemical methods are widely used for the detection of trace metals in the different environmental matrixes, with the possibility of assessment the trace metal speciation.

It offers a simple alternative to traditional analytical methods, with a high degree of sensitivity for lower cost.

- Great challenge in the area of trace metal detection is the development of electrochemical techniques and working electrode materials which are
- □ selective
- have a low detection limit e.g. sensitivity
- stability and renewability of the working electrode surface

One of the advantages is the device miniaturization that opens the possibility of developing a real time field detection system to overcome possible artefacts due to sample collection and handling and to provide immediate results for decision.

The modern electrochemistry is focused on the finding the different strategies dedicated to improving the analytical performances and minimizing the impact of the techniques on the environment.

Electrochemistry

- is the branch of chemistry concerned with the interrelation of electrical and chemical changes that are caused by the passage of current.
- for detection of the trace metals the anodic stripping voltammetric techniques are applied as they offer possibility to preconcentrate the electroactive trace metals in the potential range of the working electrode.

Methodology

- in our work, we focused on the detection: Pb, Cu, Cd and Zn which are expected to have elevated concentrations in the samples.
- the aim was to develop and to test Bi modified glassy carbon electrode (Bi-GC) and the Au microwire electrode
- □ all the samples were acidified to pH 2 before measurements

Water sampling at the CTP

VALSE

Water samples were also taken and filtered during a granulometric treatment process of sediment at the CTP

Water sampling at the CTP

VALSE

CTP member of

M7647 sediment form Wallonie

Cd, Zn and Cu, Pb

M7993 sediment from France

Cu and Hg, Pb, Zn

Characterization of sediment was done by CTP

135-05

105-05

10:44

(花術-

205-66-

(花-前)

1400

VALSE

Electrode : GC- Bi

Results obtained on the GC-Bi electrode in the samples collected at CTP 10/2017

Results obtained on the micro-Au electrode in the samples collected at CTP 03/2018

Cd (ppb)		Zn (ppb)					Cu (ppb)		
	ICP-AES E	lectrochemistry							
T2-1	9.012	4.13		ICP-AES	Electrochemist	γ		ICP-AES	Electrochemistry
T2-2	9.301	4.502			pH = 2 pH	oH =3.5			pH = 2
T2-3	8.877	2.312							·
OF2	9.238	4.046							
OF3		2.422	T2-1	261	202.04	300	T2-1	35	21.04
UF1	8.855	2.302	T2-2	102		110	T2-2	28	35.86
UF2	9.267	3.626	T2-3	< 50	5.1	40	T2-3	25	23.63
UF3	8.998	1.536	OF-1	78	10.08		OF-1	27	34.86
			0	50	26.04	FO 14	05.2	-/ 2F	22.0
			UF-2	50	26.94	50.14	UF-2	25	23.9
Zn (ppb)			OF-3	< 50		51.565	OF-3	25	21.64
			UF-1	103	14.66	100	UF-1	37	27.8
T2-1	70.334	24.5133501	UF-2	55	13.72	50	UF-2	26	26.04
T2-2	69.792	10.9374878		50	4.5.0	40		27	22.40
T2-3	70.686	17.7895356	UF-3	53	4.56	48	UF-3	27	22.48
OF2	70.65	11.253559	RC-1	259	119.98		RC-1	33	24.32
OF3	23.832778		RC-2	215	144.02	221.94	RC-2	26	16.38
UF1	72.446	72.446 23.9574828		210	11102		110 2	20	10.00
UF2	73.218 20.8447791		RC-3	52		53.65	RC-3	25	25.76
UF3	72.729	20.4690488							

Sediment sampling

- TD 26 disposal site near St. Omer (northern France)
- the concentration of the metals in the surface samples was measured with the pXRF
- The electrochemical measurements and AVS were performed on the surface samples and one sediment column profile

On site analysis of the sediment samples

The samples digestion was done with 1 M HCl for 1h and after filtration voltammetric measurements at Bi modified GC electrode were preformed on site.

In the samples with the applied procedure the Pb was detected. All the samples will be analyzed at laboratory to optimize the measurement procedures and sample preparation protocols.

Results

Cu / ppm

	pXRF	ICP-AES	Electrochemistry
A0	114	14.7495933	3 10.45029809
A2	27	17.5872629) 11.51094935
A3	23	14.3236589	12.92608617
A4		17.0688751	l 12.23899861
A5	29	14.1607896	5 11.53430274
В	29	27.1989961	l 18.39075102
С	54	37.9320088	30.55294499
D	28	18.7585204	16.964416
E	19.45	8.5028432	8.003726441

	Pb / ppm			
	pXFR	I	CP-AES	Electrochemistry
A0		28	24.2481131	16.32352941
A2		29	20.0553364	11.93181818
A3		27	17.9864938	3 13.10502283
A4		40	78.2692181	42.78186275
A5	1	13	116.318361	72.11805556
В		51	52.2045729	38.175
С		90	77.9307369	74.97577519
D		27	29.0704448	23.36956522
E		27	18.5633643	13.11904762

In situ analysis of the trace metals in river Deûle River (northern France) – further development and testing of the micro-Au for analysis of the trace metals connected with sediment resuspension

Conclusion

 Electrochemistry has potential for the application in the field measurements

 Detection of the trace metals is possible, but the further development is necessary for development of procedures for specific trace metals

VALSE

VALSE

Nouvelles ressources transfrontalières : vers une validation de scénarii de valorisation de sédiments et autres matériaux

maîtriser le risque pour un développement durable

