

Sediment quality assessment criteria: new approaches and views

M. Sprovieri, N. Sabatino, M.C. Lombardo, M. Sammartino, D. Valenti
IAS-CNR, Italy (mario.sprovieri@cnr.it)
University of Palermo, Italy

ENVIRONMENTAL RISK ASSESSMENT

Environmental Risk Assessment (ERA), including sediment assessment, is a **COMPREHENSIVE** approach to **support decision making** in the regulatory context, and covers a wide spatial set of situations under very different regulatory contexts

MY TODAY'S JOB...

- ☐ It is a question of interfaces
- ☐ Where the EqP model coupled to BLM, WHAM and speciation models fail
- ☐ A quick glance on the complexity of the environment
- ☐ Ecotoxicology under pressure
- Dynamics vs thermodynamics vs kinetics
- Proposal of a systemic approach: toxicity as an emergent property

PROCESSES AT THE INTERFACE

Circulation within organism, accumulation in target organ, toxicokinetics, toxic effects, biodegradation

Soil/sediment-associated contaminant

Equilibrium?

Released contaminant

A GIANT PROBLEM OF CHEMISTRY AT THE INTERFACES

ECOTOXICOLOGY AND CHEMICAL SPECIATION: A GLANCE AT THE BOUNDARY

Quantitative risk assessment model on Weight of Evidence (WOE) approach LOE 1 LOE 2 Chemical Bioavailability analyses LOE 5 Benthic communities LOE 4 LOE 3 **Biomarkers Bioassays** Integrated Risk Index using WOE approach

THE SEDIMENT PUZZLE

BIOAVAILABILITY...A CHALLANGE IN ITSELF

- ☐ Equilibrium Partitioning [EqP] model (Di Toro et al., 2005) for metals
 - ✓ Simultaneously Extracted Metals [SEM] (Di Toro et al., 2005)
 - ✓ Acid Volatile Sulphide [AVS]
 - ✓ Organic Carbon
 - √ Fe,Mn hydroxide
 - ✓ Grain Size.
- ☐ Equilibrium Partitioning [EqP] model (Di Toro et al., 2005) for POPs
 - ✓ Grain size
 - ✓ Organic Carbon
 - ✓ Black carbon
 - ✓ Aging

EqP-MODEL FOR METALS

$$\frac{\text{SEM}}{\text{SEM}} = \frac{\text{AVS}}{\text{Foc} \text{K}_{\text{oc}} \text{C}_{\text{w}}} + \frac{\text{K}_{\text{d}}(\text{a+b[FeO}_{\text{x}} + \text{MnO}_{\text{x}}])}{\text{MnO}_{\text{x}}}$$

AN OPERATIONAL APPROACH

AVS, SEM... DEFINITIONS AT WORK

- \square SEM= [Ni]+[Cd]+[Zn]+[Sn]+[Ag]+[Hg]; $K_{sp}>K_{sp, Pyrite}$
- \Box $F_{oc}K_{oc}C_{w}$
- \Box $K_d(a+b[FeO_x+MnO_x])$

A DEEP GLANCE TO THE AVS PROBLEM

	eS and Fe ₃ S ₄ minerals have rarely been reported from
m	arine sediments
	he measurement of AVS-S cannot be related directly to any articular sulfide component in a sediment
☐ Ar	nalytical protocols for AVS-S vary considerably and are
	ntirely empirical. Different protocols leach different
ar	mount of AVS materials
	VS-S is not equivalent to FeS-S
☐ Pc	ore water analyses will include filter-passing,
na	anoparticulate solids as well as clusters and complexes
□ Ру	yrite-S contributes to AVS-S and analytical protocols
	annot be assumed to separate S(-II) components from yrite-S
	he effects of sample handling on measurements of AVS-S ave not been quantified

$$\frac{\text{SEM}}{\text{SEM}} = \frac{\text{FeS}}{\text{Foc} K_{\text{Oc}} C_{\text{W}}} + \frac{\text{K_d(a+b[FeO_x+MnO_x])}}{\text{SEM}}$$

BIOAVAIL. = SEM +
$$\Sigma_i f_{oc} K_{i,oc} FCV_i$$
 + EXTRA-M

Ecotoxicology (mainly bioassays) under pressure...

- ☐ An integrated view of processes...<u>no system</u> <u>understanding</u>
- □ A static view of sediments: (thermo)dynamics vs kinetics
- ☐ A black-box of responses: limited understanding of dynamic chemical processes at the sediment interfaces
- ☐ Only a "linear" exploration of **COMPLEXITY**
- ☐ False positives and negatives obscure/hide complexity

NEED OF A MUCH MORE DEEPER LEARNING

- ☐ Improved biogeochemistry and system nonlinear responses
- Dynamics vs Stable conditions
- ☐ Improved scientific handling of environmental variables
- ☐ An integrated view of processes
- ☐ Complexity vs linearity

COMPLEX SYSTEM AND EMERGENT PROPERTIES

- From a linear and/or combined view of pollutants behaviour, multiple physical parameters of sediments and aquatic/biotic interfaces to... a systemic approach
- Analysis of emergent properties of the whole chemical-physical and ecological system rather than of any or a simple addition of its components

EMERGENT PROPERTIES

- Properties of the system <u>as a whole</u> rather than properties that can be derived from the properties of components of a system
- Emergent properties are a consequence of the relationships between system components
- ☐ They can therefore only be assessed and measured once the components have been integrated into a system

BIOAVAILABILITY/TOXICITY EMERGENT PROPERTY OF A COMPLEX SYSTEM

Properties of the Whole vs. Properties of the Parts

MINERALOGY AND DYNAMICS OF PHYSICAL AND CHEMICAL PARAMETERS

GEOCHEMISTRY AT WORK

A FIRST EXAMPLE OF AN APPROACH IN TERMS OF A COMPLEX/DYNAMIC SYSTEM

BASIC SYSTEM OF EQUATIONS

 \Box Fe(OH)₃ + 3H⁺ = Fe²⁺ + 3H₂O \Box Fe²⁺ + ¼ O₂ +2OH⁻ + 1/2 H₂O = Fe(OH)₃ \Box FeS + H₂S = FeS₂ + H₂ \Box FeS₂ + H⁺ = Fe²⁺ +HS⁻ +S⁰ \Box FeS₂ + 8H₂O + 14Fe³⁺ = 15Fe²⁺ + 2SO₄²⁻ + 16H⁺ \Box FeS₂ + H₂O + 7/2O₂ = Fe²⁺ + 2SO₄²⁻ + 4H⁺ \Box Fe²⁺ + HS⁻ = FeSH⁺ \Box Fe²⁺ + H₂S = FeS + 2H⁺ \Box FeS + 2 H⁺ = Fe²⁺ + H₂S \Box FeS +H⁺ = Fe²⁺ + HS⁻

BASIC SYSTEM OF EQUATIONS

1)
$$SO_4^{2-} + 10H^+ - H_2S + 4H_2O k = 10^{40}$$

2)
$$SO_4^{2-} + 9H^+ - HS^- + 4H_2O k = 10^{33}$$

3)
$$HS^- + H^+ \stackrel{k_g}{\longrightarrow} H_2S k = 10^7$$

4)
$$Fe^{2+} + \frac{1}{4}O_2 + 2OH^- + \frac{1}{2}H_2O \xrightarrow{k_1} Fe(OH)_3 k_{cin} = 1.5*10^{13} l^2 mol^{-2} atm^{-1} min^{-1}$$

5) FeS+ H₂S
$$\stackrel{k_2}{-}$$
! FeS₂ + H₂ k = 10^{6.1} K_{cin} = 1.03 * 10⁻⁴ l mol⁻¹s⁻¹

6)
$$\text{FeS}_2 + \text{H}^+ \quad \frac{\kappa_3}{} \quad \text{Fe}^{2+} + \text{HS}^- + \text{S}_0 \quad \mathbf{K}_{sp} = \mathbf{10}^{-16.4} \quad \mathbf{K}_{cin} = \mathbf{1} * \mathbf{10}^{-7.52} \; \text{mol } m^{-2} \; \text{s}^{-1}$$

7)
$$\text{FeS}_2 + \text{H}_2\text{O} + \frac{7}{2}\text{O}_2 \xrightarrow{k_4} \text{Fe}^{2+} + 2\text{SO}_4^{2-} + 4\text{H}^+ \ k_{cin} = 10^{-10} \ \text{mol m}^{-2} \ \text{s}^{-1}$$

8)
$$\text{Fe}^{2+} \text{H}_2\text{S} = \frac{k_{\text{S}_k}}{k_{-5}} \text{FeS} + 2\text{H}^+ \quad \text{K} = 10^{-3.7} \quad k_{cin} = 7 \text{ I mol}^{-1} \text{ s}^{-1}$$

DYNAMICAL SYSTEM

$$x_1(t) = [Fe^{2+}]$$
 $x_2(t) = [FeS]$ $x_3(t) = [FeS_2]$
 $x_4(t) = [H_2S]$ $x_5(t) = [HS^-]$

$$\begin{cases} \frac{dx_1}{dt} = C - k_1 \frac{A}{[H^+]^2} [O_2]^{1/4} [H_2 O]^{1/2} x_1 + k_{-5} [H^+]^2 x_2 + k_4 [H_2 O] [O_2]^{7/2} x_3 \\ -k_5 x_1 x_4 - k_3 [S^0] x_1 x_5, \end{cases}$$

$$\begin{cases} \frac{dx_2}{dt} = -k_2 x_2 x_4 + k_5 x_1 x_4 - k_{-5} [H^+]^2 x_2 \\ \frac{dx_3}{dt} = k_2 x_2 x_4 + k_3 [S^0] x_1 x_5 - k_4 [H_2 O] [O_2]^{7/2} x_3 \\ \frac{dx_4}{dt} = -k_2 x_2 x_4 - k_5 x_1 x_4 + k_{-5} [H^+]^2 x_2 + k_c [H^+] x_5 + k_a [SO_4^{2-}] [H^+]^{10} \\ \frac{dx_5}{dt} = -k_3 [S^0] x_1 x_5 - k_c [H^+] x_5 + k_b [H^+]^9 [SO_4^{2-}] \end{cases}$$

SPECIFIC FEATURES OF THE SYSTEM

- Non-linear system, continuous and converging towards attractors. System stable at various conditions
- Trajectories of the different species in the EhpH stability field are well-described and quantified
- We can calculate the buffer (complexing) capacity of the Fe_xS_v system
- Need of field-tests to verify theory

[FexSy] (mmol)

FE_XS_Y NORMALIZATION

SEDIMENT AVAILABLE CADMIUM (µmol/mmol FeS)

Traditional approach Research priorities **New paradigm** Reactive types are Organic matter Reactive types are discrete reactivity continuous Benthic-pelagic Dynamics of Benthic-pelagic resuspension and BBL boundary is a dynamic boundary is distinct biogeochemistry gradated layer Sediments are both Sediments are Phytobenthos and heterotrophic and associated interactions heterotrophic autotrophic Biological transport and Redox zonation is Redox zonation is small-scale convoluted layered heterogeneity Impact of episodic Disruption is stochastic Seasonal forcing and recovery semievents, recovery rates continuous and processes

...MY TAKE HOME MESSAGE...

- We must re-think our approach to evaluation of sediments bioavailability/toxicity in terms of complex system and biogeochemical dynamics. Non linear addition of "pieces" but approaches to emergent properties
- Eh, pH, O₂ (physics) dominate dynamics of [Fe, S, OC,FE/Mn hydroxides] chemistry in sediments: we need new and more "conservative" sampling methods
- Dynamics dominate stable conditions...this is complexity at work
- ☐ Ecotoxicity needs a deeper understanding of biogeochemical dynamics of pollutants in seds

Thanks for your attention!

