Who Should Pay for Sediment Management?

Philip Spadaro, TIG Environmental

5 April 2019

Presented at the Eleventh International SedNet Conference
Dubrovnik, Croatia
3–5 April 2019
Industrial Legacy = Contaminated Sediments

- Two important questions:
 - Technology: How will we clean up the contamination?
 - Finance: Who will we pay for the cleanup?
- Polluter should pay… correct?
 - Which polluter?
 - How much for each?
- How can we organize the process of distributing the cost?
Concept of Liability

• Liability is triggered by:
 – A “Release” or “Threatened Release”
 – Of a “Hazardous Substance”
 – At or from a “Facility”
 – At or above concentrations considered hazardous
 – And “causes” cleanup costs to be incurred

• These are very general concepts and open to a lot of interpretation

• Legal issues must be considered on a country-specific basis
Liability… Who and How Much?

• Who can be liable?
 – Current owners and operators
 – Past owners and operators
 – Transporters and arrangers
 – Disposal facilities

• What is the magnitude?
 – Past costs of study or remediation
 – Increased operating or disposal cost due to contamination
 – Cost of remediation
 – Cost of monitoring
How to Decide Who Should Pay?

• Parties are often responsible for different types and amounts of contamination
• Each could be responsible for a different share of cleanup costs
• Often, allocation proceeds in a dispute resolution setting
Private Allocation vs. Litigation

• Private allocation can have some advantages:
 – Much greater control over process
 – Increased degree of certainty as to results
 – Ability to interview qualified candidates and to select experienced allocator
 – Ability to decide whether to participate in allocation process and to what extent
 – Retention of control over ultimate decision whether to accept allocation and to join settlement based on allocation
 – Opportunities for settlement negotiations and mediated settlement

• Litigation offers a prescribed process
 – Less control over the steps in the process
 – More finality of outcome
What is the Approach to Organizing the Allocation?

• Within these settings, there is no prescribed method for allocating cleanup costs
• The allocation method must be developed specific to the site, and should account for:
 – Commonly accepted scaling factors
 – Area(s) requiring cleanup
 – Contaminant(s) requiring cleanup
 – Behavior of the waterbody where the site exists
 – Number of participating potentially responsible parties (PRPs)
 – Nature and extent of PRP contributions to the areas requiring cleanup
Factors Typically Used to Allocate Liability

- Amount of Substance
- Toxicity of Substance
- Degree of Fault
- Degree of Involvement
- Degree of Care
- Degree of Cooperation
- Permits to Discharge
- Knowledge/ability to act
- Finances/ability to pay
- Benefit received
- Timing
- Equitable Defenses
- Quality of Evidence
- Control
Allocation Strategies

• Reducing the size of the pie
 – Is the site definition appropriate?
 – Is the site characterization sufficient?
 – Is the selected remedial/removal action appropriate?
 – Is adequate source control in place?

• Reducing your slice of the pie:
 – Defensive strategy – “We are not liable (or we have a defense to liability), because . . .”
 – Divisibility – “We are not jointly and severally liable, because we can distinguish the harm caused by our release from others”
 – But-for argument – “But for the harm created by others, ours would not be a cause of action”
 – De minimis/de micromis argument – “Our contribution of hazardous substances is minimal, in amount and toxicity, compared to others and to the site as a whole”
 – Offensive strategy – “Those others caused the harm”
Factual and Technical Challenges

• Site can include river, harbor, or other waterway bottom and adjacent land, while area of interest can include surrounding drainage area
 – Numerous industrial and commercial properties
 – Primary and secondary sources
 – Extensive transportation and utility infrastructure elements

• Sources can be distant from sediment cleanup area
 – Currents, tides, and vessels spread contamination
 – Sewer lines transport and discharge contaminants from upland sources

• Contamination can be result of multiple releases of multiple contaminants from multiple sources
 – Industrial and commercial facilities in close proximity
 – Multiple contributors to storm drains and combined sewer overflows
 – Vessels, vehicles, and other transportation modes

• Contaminants may have been released and deposited over the past century or even longer
Develop a Strategic Approach

• Realize that this is a time consuming process
• Develop a consensus methodology – transparency is important
• Agree on data sources and rules
• Agree on schedule
Tools for Allocation Technical Support

- Sediment Quality data
- Particle transport studies.
- Historical research (ownership and operation)
- Waste discharge records and permits
- Sewer networks
- Particle transport modeling tracer studies
- Chemical and isotopic fingerprinting
Thank You

Philip Spadaro
Vice President and Principal Scientist
TIG Environmental

1200 Westlake Avenue North,
Suite 809
Seattle, WA 98109

pspadaro@intell-group.com

+1 (206) 438-3952

www.intell-group.com