

SedNet Conference · 5th April 2019 · Dubrovnik, Croatia

Mud transport under climate change ---- from 2013 to 2050

Qilong Bi, Sven Smolders, Joris Vanlede

Flanders Hydraulics Research, Antwerp, Belgium

1

Climate change

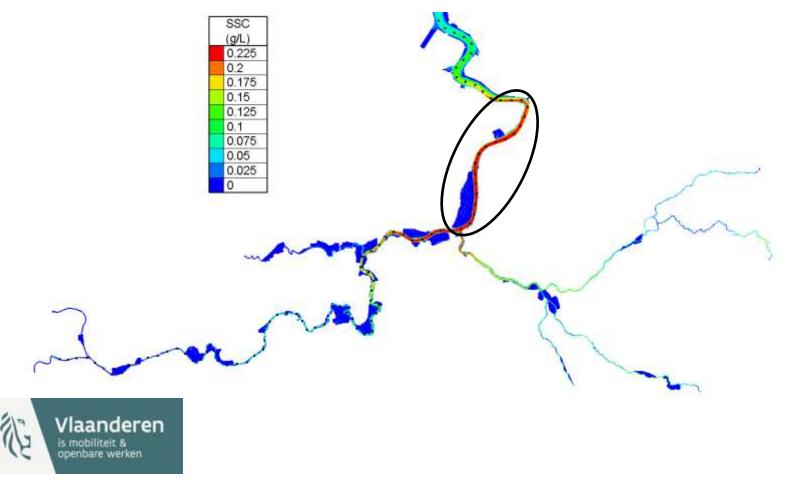
- Sea level rise is one of the main consequences of global warming
- The Antarctic ice sheet is potentially the largest contributor to future sea level rise
- Global mean sea level rise could range from 15 cm to 40cm by 2050 relative to the situation in 2013 (IMDC)
- How it will affect cohesive sediment transport in the Scheldt by 2050? And the ecological impact to the system? (Integraal plan Boven-Zeeschelde)

3D Mud Transport Model

- Focus on the Upper Sea Scheldt (110km – 170km from the estuary mouth)
- Modelled with TELEMAC suite
- Based on the calibrated 3D hydrodynamic model (SCALDIS)
- Salinity is included
- Only has 1 class of fine sediment particles
- Sediment dumping is included

3D Mud Transport Model

- Unstructured mesh
- Mesh size ranges from 500m to 5m
- 472,400 nodes per plane
- 5 planes in vertical


Bottom

(m)

13 6 -1 -15 -22 -29 -36 -43 -50

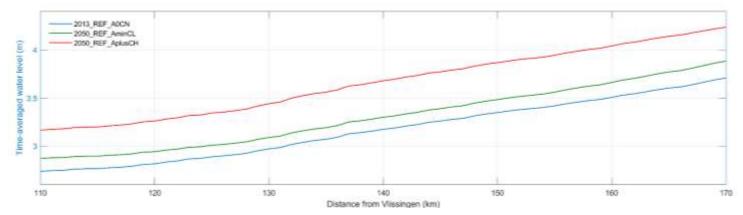
Model Results (SSC)

Mean sediment concentration showing a ETM zone near Antwerp

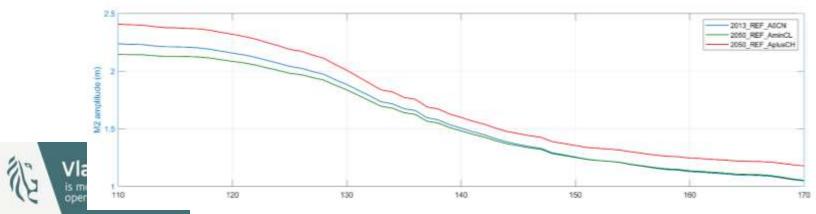
Climate scenarios

• Sea level rise

- The "current" situation (CN, +0 cm in 2013);
- The "low" scenario (CL, +15 cm in 2050);
- The "high" scenario (CH, +40 cm in 2050).
- Change of tidal amplitude
 - tidal amplitude at Schelle 5.40m (current situation A0)
 - tidal amplitude at Schelle 5.00m (future scenario A-)
 - tidal amplitude at Schelle 5.70m (future scenario A+)
- Increase of the mean upstream discharge by 2050



Climate scenarios

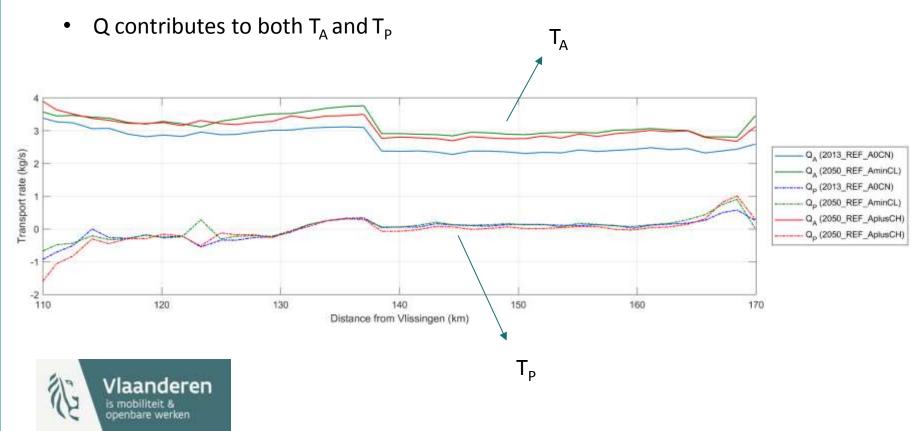

Scenario	Discharge	Tidal amplitude	Sea level rise
2013_REF_A0CN	Q2013	AO	CN(2013)
2050_REF_AminCL	Q2050	A-	CL (2050)
2050_REF_AplusCH	Q2050	A+	CH (2050)

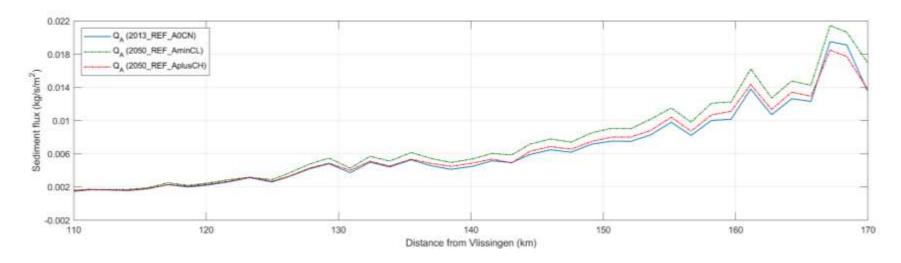
• The sea level rise is well reproduced across the entire domain

• The increase of Q also impact the tidal amplitude near the upstream boundary

- Sea level rise makes the system less ebb dominant
- Increase of Q increases the ebb dominance near the boundary
- Increase of tidal amplitude makes system less ebb dominant

- Decomposed sediment transport/flux (uses cross-sectionally averaged quantities for simplicity)
- Tidally averaged transport $\langle T \rangle = T_A + T_P + T_R$
- Transport due to mean flow $T_A = \langle C \rangle (\langle U \rangle \langle A \rangle + \langle U'A' \rangle)$

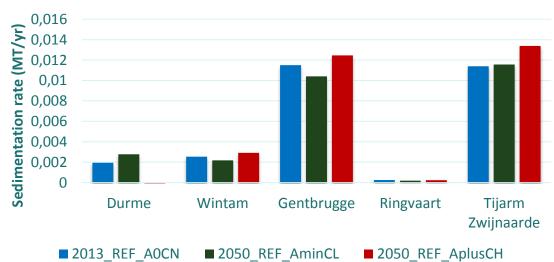

due to tidal pumping $T_P = \langle U'C' \rangle \langle A \rangle$


- residual part $T_R = \langle U \rangle \langle C'A' \rangle + \langle U'C'A' \rangle$
- The decomposed flux

$$\langle Q \rangle = Q_A + Q_P + Q_R = \frac{T_A + T_P + T_R}{\langle A \rangle}$$


- The main transport is through T_A , T_P is only a small fraction in this region
- T_A (and T_{total}) has direction towards downstream, suggesting an ebb system

- Q_A indicates the transport efficiency
 - − Increase Q \rightarrow more sediment transported downstream
 - Increase tidal amplitude \rightarrow less sediment transported downstream
 - The effect of increasing Q decays towards downstream as the transect area increase



1-Durme, 2-Wintam, 3-Gentbrugge,4-Ringvaart and 5-Zwijnaarde

A- reduces the sedimentation while A+ increases it, suggesting higher tidal amplitude, less ebb dominant.

Sedimentation in Polygons (Upper Sea Scheldt)

Conclusions

- Climate change has impact on the mud transport in the Upper Sea Scheldt
 - Sea level rise tends to reduce the ebb dominance thus could reduce seaward mud transport (based on tidal asymmetry)
 - Increasing the upstream discharge could increase the ebb dominance and seaward mud transport
 - Increasing tidal amplitude could make the system less ebb dominant, reduce the seaward transport and more sedimentation in the upstream

Thanks for your attention!

